

Main steps after generating your item pool

- 1. Write the introduction to your questionnaire
- 2. Evaluate the content of each item
- 3. Evaluate Inability or unwillingness to answer

TU/e Technische Universiteit Eindhoven University of Technology

- 4. Critically asses question wording
- 5. Determine the order of questions
- 6. Determine form and layout
- 7. Determine method of administring
- 8. Pretest your questionnaire
- 9. Iterate

/ Industrial Design

Identify unwillingness or inability to answer

1. Minimize the effort required of participants

TU/e Technische Universiteit Eindhoven University of Technologi

- 2. Is the context of the questions clear and appropriate
- 3. Make a request for information seem legitimate
- 4. In case of sensitive information:
 - 1. Place items at the end
 - 2. Preface with a 'common' statment
 - 3. Ask questions in 3rd person
 - 4. Hide questions in between others
 - 5. Provide response categories
 - 6. Use randomized techniques

/ Industrial Design

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Bad examples 5: Jarg	gon
Bad	Better
Using the system made me feel more socially connected to my social network: Agree Disagree	I felt closer to my friends by using the system:DisagreeAgree000000
/ Industrial Design	TU/e Technische Universiteit Eindhoven University of Technology B/142000 PAGE 24

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Ans	W	er			le	go	nes	
What is you	ır over	allsa	atista	action	with	ourproc	luct?	 For likert type scales:
Not at all satisfied	0	0	0	0	0	Extre	emely fled	Even or odd?
What is you	ir over	all sa	atisfa	ction	with	our proc	duct?	• Labeling?
Not at all satisfied	1 ©	2 ()	3 ()	4 0	5 0	Extre satist	mely fled	 Number of options? "Don't know"?
What is you	r over	all sa	atisfa	ction	with	our prod	juct?	Pictorials?
0 1	02	0	3 (04	05			
What is you	r over	all sa	atisfa	ction	with	our prod	luct?	
Not at all satisfied	Sligh satisf	tly i ied	Mod sat	erate isfied	ly si	Very atisfied	Extremely satisfied	
0	0			0		0	0	

19

C	orre	ala	tione i		,
test.sav	[DataSét1] - S	PSS Statis	tics Data Editor	Address Mindee Mile	
Co Da 1	view Data	transform	Analyze Graphs Unites	Address Vendow Bob	
083	E 900		Megoria	0.0.0	
	Name June 12	Iy	Descriptive Statistics		辞 Bivariate Correlations
- 1	item 13	Numen	Comment Manage	 re system tooked good 	Yerisbler:
2	dum16	Numeri	Compare means	 be design or the system w band the look and feel of the 	The design of the ic
	item 15	Numeri	General Unear Model	 Ked the look and leel of tr a design of the issues was 	The system looked b An The design of the system An The design of the system
	item17	Numeri	Minut Makin	a design of the icons was	a Louid easily perfor
6	item19	Numeri	Correlate	Se Elvariate to us	a The system was ea
7	item19	Numeri	Burneroim	E. Defid	db Hontoming the backs
0	Rem 20	Numeri	Logices	A Distances	Chaices were as.
Q	item20	Numeri	Neural Networky	Graning the tasks year at	R. The Interaction with
10	item22	Numeria	Classify	e system nerformed as 1	Correlation Coefficients
11	item73	Numeria	Dimension Reduction	b a input were exectly und	Paarton Kandalit tau b Spaarnan
12	item24	Numeria	Scale	e interaction with the sys:	Test of Significance
13	1.01162.4		Nonperametric Tests	•	() Iwe-tailed () One-tailed
1.4	-		Forecasting		
15			Survival		Eleg significant correlations
16			Mytiple Response	b	OK Easte Beset Cancel Help
17			Missing Value Analysis		
18			Mutple Imputation	•	
19			Complex Samples	•	
20			Quality Control	>	
21			Rôć čurge		
					TU/e Technische Universiteit Eindhoven University of Technology
dustrial Des	sign				14-8-2009 PAGE 52

0		11 - I- 11 (
5	cale re	eliability			
		,			
1 Latitled	2 (DataSat 2) - CDCC Statistic	r Data Editor			
File F-R	View Data Transform Anal	s Dette Egitter Ivze Genetic Utilies Add.cos Window Help			
	Name Type	Width Decimals Label	Values	Missing Columns	Align Measure
1	var1 Numeric	0 2 The system was easy to use	None No	ne O	≣ Right @ Scale
2	var2 Numeric	8 2 I had problems using the system	None No	ne O	TRight & Scale
з	var3 Numeric	8 2 Using the system was simple	None No	ne 8	I Right 🖉 Scale
4	var4 Numeric	8 2 Lenjoyed using the system	None No	ne 8	≡ Right 🖋 Scale
5					
	Descriptive Statistics	Label			
	1 Ispec	e system was easy to use			
	Compare Means	ad problems using the system			
	Concretent Linear Models	 sing the system was single moved using the system 			
	Mineri Madeta	Information in a statement			
	Correlate	•			
	Regression	•			
	Lgginear	,			
	NeuralNelgentra	•			
	Cluzoniy	•			
	Omension Reduction				
	Scale	 Ifr Belability /matycis 			
	Boubocowetric (esta	Mutamensional Unrolang (IMEPSCAL)			
	Porocouping	Buildenerstonial Scaling (1900/SCAL)			
	Multiple Democra	Figure and the stand (second).			
	50 Missing Value Analysis				
	Multiple Imputation	•			
	Complex Sumples			/	Technische Universiteit
	Quality Control	•		111/6	Eindhoven
	ROC CUTYS				 University of Technology
		-			
ndustrial D	lesign				

Scale reliability	
盘 Reliability Analysis: Statistics	
Descriptives for Inter-litem Ø Ben Scale Ø Scale Coversings Ø Scale Coversings Ø Scale Coversings Ø Scale Scale Ø Scale Coversings Ø Scale Scale Ø Scale Totale Ø Scale Totale Ø Scale Totale Ø Scale Totale Ø Scale Totale	Retisbuility Analysis Retisbuility Ana
/ Industrial Design	TU/e Technische Universiteit Endioven University of Technology 16.0.2000 PAGE 50

Scale r	reliability	correlati	on matrix	(
	Inter-Item Correlation Matrix									
	Var 1	Var 2	Var 3	Var 3						
Var 1	1,000	-,565	,631	,670						
Var 2	-,565	1,000	-,807	-,678						
Var 3	,631	-,807	1,000	,662						
Var 3	,670	-,678	,662	1,000						
·										
			TU	Technische Universiteit Eindhoven University of Technology						
strial Design				14-8-2009 PAGE 59						

Scale	e re	eliat	oilit	y SP	SS ou	tput		
Re	liability \$	Statistics						
Cronbach's Alpha ^a	Croni Alpha Standa Ite	bach's Based on ardized ems ^a	N of Iten	ns				
a. The valu covarian assumpt								
Γ	;	Scale Me Item Del	ean if eted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted	
	/ar 1	12,	1667	4,144	,641	,512	-1,747 ^a	-
1	/ar 2	13,	1000	20,093	-,786	,689	,847	
\ \	/ar 3	12,	7000	4,769	,329	,701	-1,036 ^a	
\ \	/ar 3	13,	2333	4,668	,551	,585	-1,410 ^a	
	a. The viol	e value is ates relia	negative bility mo	e due to a nega del assumption	ative average co ns. You may wa	ovariance among nt to check item	titems. This codings.	echnische Universiteit Indhoven Iniversity of Technology
/ Industrial Design								

	Inter-Iten	n Correlatior	n Matrix	
	Var 1	Var 3	Var 4	Var 2 Mirror
Var 1	1,000	,631	,670	,565
Var 3	,631	1,000	,662	,807
Var 4	,670	,662	1,000	,678
Var 2 Mirror	,565	.807	,678	1,000

ite	liability Statistics				
Cronbach's Alpha ,889	Cronbach's Alpha Based on Standardized Items ,890	N of Items 4			
		Item-Total	Statistics		
	Scale Mean if Item Deleted	Item-Total Scale Variance if Item Deleted	Statistics Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Var 1	Scale Mean if Item Deleted 12,2333	Item-Total Scale Variance if Item Deleted 21,771	Statistics Corrected Item-Total Correlation ,689	Squared Multiple Correlation ,512	Cronbach's Alpha if Item Deleted ,882
Var 1 Var 3	Scale Mean if Item Deleted 12,2333 12,7667	Item-Total Scale Variance if Item Deleted 21,771 18,323	Statistics Corrected Item-Total Correlation ,689 ,806	Squared Multiple Correlation ,512 ,701	Cronbach's Alpha if Item Deleted ,882 ,840
Var 1 Var 3 Var 4	Scale Mean if Item Deleted 12,2333 12,7667 13,3000	Item-Total Scale Variance if Item Deleted 21,771 18,323 21,183	Statistics Corrected Item-Total Correlation ,689 ,806 ,757	Squared Multiple Correlation ,512 ,701 ,585	Cronbach's Alpha if Item Deleted ,882 ,840 ,859

Steps to perfoming factor analysis Determine items Use your generated item set Get sufficient N Minimum 100 Minimum 300

- 50 + 5*m
- Determine number of factors
 - Scree plot, Eigenvalues, Explained variance
- Rotate the factor solution for a simpler structure
 Varimax, Oblimin

TU/e Technische Universiteit Eindhoven University of Technology

- Compute factor scores
 - Regression

/ Industrial Design

test.sov	[DataSet1] - Si	PSS Statis	stics Data Editor		
Die Edit	⊻jew Data]	[rensform	Analyze Graphs Litities	dd-gns Window Lielp	
684			Regota	• <u>• • • • • • •</u>	
	Name	Ту	Dgueriptive Statistics	Labe	
1	item13	Numeri	Tugerz	system looked good	
2	item14	Numerio	Compute Means	 le design of the system was pleasin; 	
3	item15	Numerio	General Linear Model	 ked the look and feel of the system 	
4	item16	Numeria	Generalized Linear Models	In design of the icons was good	
5	item17	Numerio	Miged Models	Ie system looked beautiful	
6	item18	Numeric	Correlate	e system was easy to use	
/	item19	Numeric	Regression	 fould easily perform the tasks I want 	
8	item.20	Numen	Logineer	e system was easy to work with	
9	item/21	Numeri	Neural Networks	bitoming the tasks was easy	
10	item22	Numeric	Classely	je system performed as l'expected	
11	item23	Numeric	Unension Heauction	In Econor	
14	Demi24	reament	biogen	Ch. Cation Scales	
	-		Exception rests	22 gama scang_	
10	-		Forecasping Sumbusi		
			Multiple Response		
10	-		55 Mission Value Analysis		
			Milline invotation		
			Complex Semiler		
	-		Quality Control		
			21 BOC Current		
	-		C		

PAF SPSS 3	
Right Right Nominal Set Factor Analysis: Extraction Image: Comparison of the compa	Image: Sector Analysis: Rotation Method Bone Quartmax Yarimax Equamax Display gromax Display Gotated solution Maginum Iterations for Convergence: 25 Continue Cancel Help Help
/ Industrial Design	14-8-2009 PAGE 74

KMO	and Bartle	tt's t	test
	KMO and Bartlett's Test		 KMO Index magnitude of observed correlations versus partial correlations
Kaiser-Meyer-Olk	in Measure of Sampling Adequacy.	,935	
Bartlett's Test of Sphericity	Approx. Chi-Square df Sig.	8890,014 66 ,000	 Barlett's Test of correlation of the variables Should be significant: Sig. < 0.05
/ Industrial Design			TU/e Technische Universitieit Eindhoven University of Technology Bit M2000 PAGE 15

Communalities						
	Initial	Extraction				
The system looked good	,566	,665				
The design of the system was pleasing	,566	,626				
I liked the look and feel of the system	,555	,600				
The design of the icons was good	,433	,444				
The system looked beautiful	,582	,619				
The system was easy to use	,570	,663				
I could easily perform the tasks I wanted to perform	,460	,544				
The system was easy to work with	,330	,366				
Performing the tasks was easy	,511	,550				
The system performed as I expected	,400	,452				
The icons were easy to understand	,661	,644				
The interaction with the system was pleasant	,528	,466				

/ Industrial Design

Factor Total % of Variance Cumulates Estraction Sums of Squared Loading Loading2 1 0.271 52.260 52.260 5.839 48.655 5.721 2 1.234 10.283 62.743 9.00 6.669 55.324 4.815 3 .711 5.926 68.469 6.669 55.324 4.815 4 .608 5.066 73.535 6 4.697 73.351 6 4.991 4.155 82.2871 6 4.991 4.155 82.3871 6 4.991 4.92.571 10 .329 2.745 95.316 4 9 3.074 92.571 100.000 1 1 10 .329 2.745 95.316 1 1 100.000 1 1 100.000 1 1 100.000 1 1 1 100.000 1 1 100.000 1 1 1 100.000 1 1 100.000 1 1 10	Initial Eigenvalues Extraction Sums of Squared Loadings Loadings Factor Total % of Variance Cumulative % Total 1 0.271 \$\$22260 \$\$2280 \$\$8 of Variance Cumulative % Total 2 1.234 10.283 62.243 \$\$00 6\$.669 55.324 4.81 4 .608 5.066 73.535 6 6.469 55.324 4.81 5 .564 4.697 73.535 6 4.697 73.334 6 9.0497 9 3.394 3.106 9.0497 9 3.393 3.074 92.571 10 10 3.39 2.745 95.316 10 11 3.39 2.745 95.316 10 11 3.39 2.745 95.316 10 10 10 3.39 2.710 10.0000 10 12 2.33 2.110 10 10.0000 12 2.33 2.110 10.0000 12 2.33 2.110 10.0000 12 </th <th></th> <th></th> <th></th> <th>Total Var</th> <th>iance Explain</th> <th>ied</th> <th> </th> <th>Rotation Sums of</th>				Total Var	iance Explain	ied		Rotation Sums of	
Factor Total % of Variance Cumulative % 48.653 4.813 4 .608 5.066 73.353 48.631 <th>$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</th> <th></th> <th></th> <th>Initial Eigenvalu</th> <th>ies</th> <th>Extraction</th> <th>Sums of Square</th> <th>ed Loadings</th> <th colspan="2">Loadings⁸</th>	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Initial Eigenvalu	ies	Extraction	Sums of Square	ed Loadings	Loadings ⁸	
1 6.271 52.260 5.280 5.839 48.655 48.655 5.121 2 1.234 10.233 62.250 5.839 48.655 48.655 5.121 3 7.711 5.926 68.469 6.669 55.324 4.813 4 .608 5.066 7.3535 6 4.697 76.322 6 6 .499 4.155 82.387 6 6.949 9 3.944 3.916 80.497 9 3.384 3.196 69.497 9 3.022 2.745 95.316 1 1 1.302 2.745 95.316 1 1 1 1.302 2.745 95.316 1 1 1 1.10 10.0000 1 1 1 1.10 1.10 10.0000 1 1 1 1.10 1.10 10.0000 1 1 1 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	
2 1.234 10.283 62.543 ,800 6.669 55.324 4.81: 3 7.11 5.926 68.469 68.469 55.324 4.81: 4 .608 5.066 73.555 5 5.664 4.897 78.232 68.409 68.409 69.669 55.324 4.81: 5 .564 4.897 78.232 6.669 5.024 4.81: 8 .344 .108 68.407 6.669 5.024 4.81: 9 .369 3.074 92.571 6.5316 6.669 5.5324 4.81: 10 .329 2.745 95.316 6.699 5.5324 4.81: 11 .309 2.574 97.880 6.699 5.5324 4.81: e.tractor Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6,271	52,260	52,260	5,839	48,655	48,655	5,126	
3 .711 5.926 68,469 4 .608 50.66 73,535 5 .564 4.897 78,232 6 .499 4,155 62,367 7 .470 .3914 86,301 8 .384 .3196 89,407 9 .369 .3074 92,571 10 .329 2,745 95,316 11 .309 2,574 97,880 12 .253 2,110 100,000 Extraction Method: Principal Asis Factoring: a. When factors are correlated, sums of squared loadings cannot be added to obtain a total vertance. Ce in the items explained boy the factors	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1,234	10,283	62,543	,800	6,669	55,324	4,813	
4 .008 5.066 73,535 5 .564 4,697 78,232 6 .499 4,155 82,387 7 .470 3.914 86,301 8 .384 3,196 69,497 9 .369 .3074 92,571 10 .329 .2745 95,316 11 .303 2,574 100,000 12 .253 2,110 100,000 L2 .253 2,110 100,000 .253 .2,110 100,000 Bardeno Method: Principal Asis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	,711	5,926	68,469					
5 .564 4.697 78.232 6 .499 4.155 82.287 7 .470 3.914 66.301 8 .344 3.196 89.497 9 .369 3.074 92.571 10 .329 2.745 95.316 11 .309 2.574 97.890 12 .253 2.110 100.000 Extraction Method. Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. 2.6 in the items explained by the factors		4	,608	5,066	73,535					
6 499 4,155 82,387 7 470 3.914 86,301 8 3.84 3.196 89,497 9 3.69 3.074 92,571 10 3.29 2,745 95,316 11 3.09 2,574 97,880 12 2.53 2,110 100,000 Extraction Nethod: Principal Asis Factoring: a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.	6 .499 .4155 82.387 7 .470 .3914 82.387 8 .384 .3196 89.407 9 .389 .3074 92.571 10 .329 .2745 95.316 11 .309 .2574 97.880 12 .253 .110 100.000 Extraction Method: Principal Abs Factoring: a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Action explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors are co	5	,564	4,697	78,232					
7 470 3.914 66.301 8 3.44 3.106 69.497 9 3.68 3.074 92.571 10 3.29 2.745 95.316 11 3.09 2.574 97.880 12 2.53 2.110 100.000 Extraction Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	,499	4,155	82,387					
8 .394 3.196 89.497 9 .369 3.074 92.571 10 .329 2.745 95.316 11 .309 2.574 97.890 12 .253 2.110 100.000 Extraction Method: Principal Akis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	,470	3,914	86,301					
9 .369 3.074 92.571 10 .329 2.745 95.316 11 .309 2.574 97.890 12 .253 2.110 100.000 Extraction Metho: Principal Alse Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance.	9 .369 .3.745 92.571 10 .329 .2.745 95.316 11 .303 .2.574 97.800 12 .253 .2.110 100.000 12 .253 .2.110 100.000 14 .309 .2.574 97.800 15 .253 .2.110 100.000 16 .000 .000 .000 17 .253 .2.110 100.000 18 .267 .000 .000 19 .000 .000 .000 12 .253 .110 100.000 12 .253 .2.110 .000 12 .253 .010 .000 12 .253 .010 .000 10 .000 .000 .000 .253 .010 .000 .000 .253 .010 .000 .000 .253 .010 .000 .000 .253 .000% .000 .000 .254 .000%<	8	,384	3,196	89,497					
10 .329 2.745 95.316 11 .309 2.574 97.880 12 .253 2.110 100.000 Extraction Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors	10 .329 2.754 95.316 11 .309 2.574 97.890 12 .253 2.110 100.000 Extraction Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. ce in the items explained by the factors ative > 60% hyperbolic colspan="2">hyperbolic colspan="2">hyperbolic colspan="2">hyperbolic colspan="2">hyperbolic colspan="2">hyperbolic colspan="2">a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. ce in the items explained by the factors ative > 60% hyperbolic colspan="2">hyperbolic colspan="2" hyperbolic cols	9	,369	3,074	92,571					
11 .309 2.574 97,890 12 .253 2.110 100,000 Extraction Wethod: Principal XMs Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors	11 .209 2.574 97,890 12 .253 2.110 100,000 Extraction Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. Ce in the items explained by the factors ative > 60% August colspan="2">August colspan="2" August colspan="2" <td>10</td> <td>,329</td> <td>2,745</td> <td>95,316</td> <td></td> <td></td> <td> </td> <td></td>	10	,329	2,745	95,316					
12 283 2,110 100,000 Extraction Method: Principal Avis Factoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. ce in the items explained by the factors	12 253 2.110 100.000 Extraction Method: Principal Avis Fectoring. a. When factors are correlated, sums of squared loadings cannot be added to obtain a total variance. ce in the items explained by the factors at ive > 60% bative > 60% by value < 1 – Factor explains less variance ual item	11	,309	2,574	97,890					
	ative > 60% nvalue < 1 – Factor explains less variand ual item	extrac a. Wh	ition Method en factors a	1: Principal Axis Fa are correlated, sun e item	ctoring. 1s of squared load	ings cannot b	ne added to obtai	n a total variance.	tors	

Communality

 Measures the percent of variance in a given variable explained by all the factors jointly.

- Example:
 - Factor solution explains the system "looking good" very well, but poorly explains the "perfomed as expected" item

Factor ma	trix		
Factor Mat	rixª		 Correlations between
	Fact	or	town own footowe
The evolution locked aread	1	2	items and factors
The system looked good The design of the system was pleasing	,718	-,388 -,341	 Factor loadings
I liked the look and feel of the system	,734		Suppressed values
The design of the icons was good	,639		below 0.3
The system looked beautiful	,784		Eactor 1 correlatos
The system was easy to use	,737	,347	 Factor i correlates bighty with all itoms
I could easily perform the tasks I wanted to perform	,613	,410	nighty with an items
The system was easy to work with	,555		 Solution not simple to
Performing the tasks was easy	,731		interpret.
The system performed as I expected	,619		 High correlation means
The icons were easy to understand	,802		highly roprosontative for
The interaction with the system was pleasant	,682		the factor
Extraction Method: Princip	al Axis Facto	ring.	
a. 2 factors extracted. 6 ite	rations requ	ired.	
			TU/e Technische Universiteit Eindhoven University of Technology
/ Industrial Design			8/14/2009 PAGE 79

Oblimin	rotat	ion	
P	attern Matrix*		 Factor loadings after
	Fac	tor	i deter ieddinige arter
The system looked	1	2	rotating
The design of the s	ystem ,831		
was pleasing I liked the look and the system	feel of ,731		 Factor one: design of the
The design of the id was good	cons ,607		system
The system looked beautiful	,555	,302	Factor two: Fase of use
The system was eause	asyto	,794	
I could easily perfor tasks I wanted to p	rm the erform	,810	
The system was ea work with	asy to	,572	 Use highest correlations
Performing the task easy	ks was	,518	to name the factors
The system perform I expected	ned as	,632	to name the factors
The icons were eas understand	syto ,509	,370	
The interaction with system was please	n the ,397 ant	,352	Correlation factors 0.0
Extraction Metho Rotation Methor Normalization.	od: Principal Axis Facto d: Oblimin with Kaiser	pring.	Correlation factors: 0.6
a. Rotation conv	erged in 10 iterations		
			TU/e Technische Universiteit Eindhaven University of Technology
/ Industrial Design			8/14/2009 PAGE 81
ě			

