Persuasion Profiling and Streaming Data Analysis and ...

Dr. M.C.Kaptein

October 22, 2015

Background

Persuasion

Persuasion in e-commerce
Estimating the effects of persuasion
Estimating heterogeneity

Persuasion Profiling
The persuasion profile
Applications

Recent work
Multi Armed Bandits
Estimation and Optimization in Data streams
Formalization of Personalization

Section 1

Background

Education

- MSc. Economic Psychology, Tilburg University
- PdEng. User System Interaction, University of Eindhoven
- Ph.D. Industrial Design, University of Eindhoven \& Stanford University
- Post Doc. Marketing, Aalto School of Economics, Helsinki

Current appointments

- Assistant Professor, Artificial Intelligence, Radboud University Nijmegen
- Founder \& Chief Scientist, PersuasionAPI \& Science Rockstars, Amsterdam /
Barneveld. Acquired by Webpower b.v..
- Speaker for The Next Speaker

- Author: "Persuasion Profiling" (in Dutch "Digitale Verleiding")

Section 2

Persuasion

Persuasion in E-Commerce

Persuasion in E-Commerce

Networks, Crowds \& Markets
Easley \& Kleinberg
Recommended price: \$ 14.99

Networks, Crowds \& Markets

Easley \& Kleinberg
Recommended price: \$ 14.99

Main Effects of Persuasion

- Average effect of the little "button": Willingness to pay increase by $>30 \%$
- Similar effects in different studies: Probability of purchase increased by 5 to 25%

Distinct Persuasion Strategies

- Scarcity
- Authority
- Social proof
- Liking
- Reciprocity
- Commitment
- ...

Estimating individual level effects of persuasion ${ }^{1}$

$$
\begin{equation*}
y_{j b q} \sim \mathcal{N}\left(X_{j b} \beta_{j}+\alpha_{b}+\eta_{q}, \sigma_{e r r}^{2}\right) \tag{1}
\end{equation*}
$$

with
$\beta_{j} \sim \mathcal{N}\left(\bar{\beta}, \Sigma_{\beta}\right)$ for $j=1, \ldots, J=179$ subjects
$\alpha_{b} \sim \mathcal{N}\left(0, \Sigma_{\alpha}\right)$ for $b=1, \ldots, B=14$ books
$\eta_{q} \sim \mathcal{N}\left(0, \sigma_{\eta}^{2}\right)$ for $q=1, \ldots, Q=4$ questions.
β is a 179×4 matrix of intercepts and coefficients for each strategy for each individual.

[^0]
Results

Results 2

Section 3

Persuasion Profiling

The persuasion profile ${ }^{2}$

${ }^{2}$ Kaptein, Eckles, \& Davis (2011). Envisioning Persuasion Profiles. ACM Interactions

Using persuasion profiles for snacking ${ }^{3}$

- Susceptibility measured using questionnaire
- Selection of strategies Random, Contra Tailored, or Tailored
- Expected decrease of 1 snack after 5 days
- $N=73$

[^1]
Using persuasion profiles for email compliance ${ }^{4}$

- Susceptibility estimated based on behavioural response
- Selection of strategies Adaptive, Original, Pre-tested, Random
- More on adaptive later

- Large differences in success probability
- $N=1129$

[^2]
Application with Booking.com ${ }^{5}$

- Optimising email communication for Booking.com
- 200.000+ Weekly emails
- Click through increase $>10 \%$

- Paper contains 3 more empirical validations

[^3]
Section 4

Recent work

Technical Challenges and Recent work

- Exploration vs Exploitation: Multi Armed Bandit Problems
- MAB problems
- Bootstrap Thompson sampling
- Thompson sampling for estimation precision
- Estimation and optimization in data streams
- SEMA (Streaming EM)
- StreamingBandit: software
- Lock in Feedback
- Formalizing personalization

Multi Armed Bandit

- Sequential decision making with "bandit" feedback
- Exploration vs Exploitation
- Examine policies
- Interest in Thompson sampling

Bootstrapped Bandit ${ }^{6}$

- Thompson sampling works well if posterior is known
- Not the case for complex models
- What about the (double or nothing) bootstrap distribution?

- For $1, \ldots$, J online bootstrapped replicates

[^4]
Thompson sampling for optimal design ${ }^{7}$

- Thompson sampling for optimal design
- Sample for most "informative" datapoints
- Select treatments based on posterior variance estimates.

[^5]
Estimation in data streams

Figure: Graphical representation

Offline EM algorithm vs. SEMA ${ }^{8}$

Offline EM algorithm

- All data in memory
- Iterations using the entire data set
- Converges to (local) ML solution
- Refit model when new data enter

Streaming EM Approximation

- Sufficient Statistics in memory
- One iteration when a data point enters
- Converges when data stream is long enough
- Update model parameters when new data enter

[^6]
Streaming Bandit ${ }^{9}$

- Back end solution for streaming bandits
- Easy integration with persuasive applications

[^7]
Optimization of online sales prices

- Relationship between price P and profit G.
- Exact function is however $G=f(P)$ unknown.
- We need to find the profit maximizing sales price sequentially.
- Pricing as a MAB problem
- Currently running
evaluations with Santander:

Pricing customer loans.

Lock in Feedback ${ }^{10}$

- Suppose we can vary treatments:
$x(t)=x_{0}+A \cos (\omega t)$ and $y=f(x)$.
- Then, we can a) multiply observed y by $\cos \omega t$, and b) integrate out the possible noise.
- By Taylor expanding y we can show this gives direct access to the derivative of (unknown) $f(x)$.
- Thus, we can use it as an update-rule for x_{0}.

Formalization of Personalization in Persuasive Technologies

- Features of the person and Possible treatments

$$
\begin{aligned}
x & \in\{\text { Male, Female }\} \\
a & \in\{\text { Message A, Message B }\} \\
y_{i} & =\mathcal{M}_{g}()=f\left(x_{i}, a_{i}\right)
\end{aligned}
$$

- With criterion:

$$
\mathcal{C}_{1}=\max \sum_{i=1}^{N} y_{i}=\max \sum_{i=1}^{N} f\left(x_{i}, a_{i}\right)
$$

Formalization of personalized feedback

(Possible) Data generating model:

$$
y_{i}=\mathcal{M}_{G}()=\beta_{0}+\beta_{1} a_{1}^{*}+\beta_{2} x_{i}+\beta_{3} a_{i}^{*} x_{i}+\epsilon
$$

Personalization function:

$$
a^{*}=\eta\left(a^{b}, x\right)
$$

where a^{b} denotes the "baseline" treatment. Consider for example:

- Non personalized: $a_{i}^{*}=\eta_{n p}\left(a_{i}, x_{i}\right)=a_{i}$
- Personalized: $a_{i}^{*}=\eta_{p}\left(a_{i}, x_{i}\right)=\left(1-a_{i}\right)^{\left(1-x_{i}\right)}\left(a_{i}\right)^{x_{i}}$

Initial results ${ }^{11}$

Using the above formailzation personalization is effective if:
$\left.\left.\underset{a^{b}}{\operatorname{argmax}} \sum_{i=1}^{N} \mathcal{M}_{g}\left(\eta_{u}\left(a_{i}^{b}\right), x_{i}\right)\right)<\underset{a^{b}}{\operatorname{argmax}} \sum_{i=1}^{N} \mathcal{M}_{g}\left(\eta_{p}\left(a_{i}^{b}, x_{i}\right), x_{i}\right)\right)$ (2)
And we can state the following (trivial) results for the 2×2 model:

- Personalization is only relevant if $\beta_{3} \neq 0$
- With $\eta_{p}\left(a_{i}, x_{i}\right)=\left(1-a_{i}\right)^{\left(1-x_{i}\right)}\left(a_{i}\right)^{x_{i}}$ and criterion \mathcal{C}_{1} personalization is beneficial if $\beta_{3}>-\beta_{1}$.

[^8]
Questions?

Maurits Kaptein
Archipelstraat 13
6524LK, Nijmegen
0621262211
maurits@mauritskaptein.com

[^0]: ${ }^{1}$ Kaptein \& Eckles (2012). Heterogeneity in the effects of online persuasion. Journal of Interactive Marketing

[^1]: ${ }^{3}$ Kaptein, de Ruyter, Markopoulos, \& Aarts (2012).
 Adaptive Persuasive Systems: A Study of Tailored Persuasive Text Messages.
 Transactions on Interactive Intelligent Systems

[^2]: ${ }^{4}$ Kaptein \& van Halteren (2012).
 Adaptive Persuasive Messaging to Increase Service Retention.
 Journal of Personal and Ubiquitous Computing

[^3]: ${ }^{5}$ Kaptein, Parvinen, \& McFarland (2015).
 Web Customization with Persuasion Profiling:
 Dynamic Adaptation of Promotional Web Content on the Fly. Under review, draft available on request.

[^4]: ${ }^{6}$ Kaptein, \& Eckles (2014).
 Scalable Thompson Sampling with the Online Bootstrap. arXiv
 Eckles \& Kaptein (2015). Submitted.

[^5]: ${ }^{7}$ Kaptein, M.C. (2014).
 The Use of Thompson Sampling to Increase Estimation Precision. Behavior Research Methods

[^6]: ${ }^{8}$ Ippel, L., Vermunt, J., \& Kaptein, M.C. (2015)
 Streaming EM approximations. Under submission.

[^7]: ${ }^{9}$ Kaptein, M.C. \& Kruijswijk, J. (2015).
 Available on Github. https://github.com/MKaptein/streamingbandit

[^8]: ${ }^{11}$ Kaptein, M.C. (2015)
 Formalizing Customization in Persuasive Technologies. Proceedings of Persuasive 2015

