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The multi armed bandit problem



Slot machines



Formal presentation

I For t = 1, . . . , t = T

I Select and action at out of At . Often actions
k = 1, . . . , k = K .

I Observe reward rt (generated by some unknown distribution
Fk(r |θk))

I Play according to some policy
Π : {a1, . . . , at−1, r1, . . . , rt−1} 7→ at



Aim of a “good” policy

I Well, get as much reward as possible!

I Thus, maximize
∑T

t=1 rt

I Or, minimize regret:
∑T

t=1(Π∗(t)− Π(t))



Exploration-Exploitation tradeoff

I Suppose observations Xk ∼ Bern(pk)

I Explore: p1 > p2? Play alternating arms to learn.

I Exploit: Play arm 1.

Very general trade-off: Exploring the outcomes of uncertain
actions, versus choosing actions that one beliefs to be good.



Omnipresence of the tradeoff

Exploration vs. exploitation found in many places:

I Clinical trial: which medicine to subscribe?

I Online content selection: Which ad, news article, or product
to show?

I Job choices: Try something new, vs. stick to what you have?

I Food choices: Try a new dish, stick to one you like

I Etc. etc.

Also known as Earning vs. Learning.



The randomized clinical trial

What is the regret of a simple RCT choosing between two
medications?

I Simple choices:
X1 ∼ Bern(p1 = .1),
X2 ∼ Bern(p2 = .5)

I Obviously: p1, p2
unkown at start

I N patients in trial, P
total patients in
population

I Always
Pr(Wrong) > 0



The randomized clinical trial: Regret



Optimal policies
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Thompson sampling & optimal design



Thompson sampling

Compute or sample from Pr(θ|D). We can then select an action
according to its probability of being optimal:∫

1

[
E(r |a, θ) = max

a′
E(r |a′, θ)

]
Pr(θ|D)dθ (1)

where 1 is the indicator function.



Thompson sampling Bernoulli Bandit

Thompson sampling in practice for the k-armed Bernoulli Bandit

I Suppose again Xk ∼ Bern(pk)

I Use (indepedent) Beta(αk = 1, βk = 1) priors

I Generate random draw dk from each k = 1, . . . , k = K Beta()
distributions

I Select arm k ′ = maxkdk
I Update posterior Beta(αk ′ + rt , βk ′ + 1− rt)

Thompson sampling is an asymptotically optimal strategy.



Experimental design as exploration vs. exploitation 1

I Thompson sampling
for optimal design

I Sample for most
“informative”
datapoints

I Assume heterogeneity
of variances

I Select treatments
based on posterior
variance estimates
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1Kaptein, M.C. (2014).
The Use of Thompson Sampling to Increase Estimation Precision.
Behavior Research Methods
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The contextual Multi-armed Bandit problem



Extension: contexts

I For t = 1, . . . , t = T

I Observe the world, xt ∈ Xt

I Select and action at out of At . Often actions
k = 1, . . . , k = K .

I Observe reward rt (generated by some unknown distribution
Fk(r |θk))

I Play according to some policy
Π : {x1, . . . , xt−1, a1, . . . , at−1, r1, . . . , rt−1} 7→ at



Examples of contextual bandits

I Clinical trial: which medicine to subscribe to a specific
patient?

I Online content selection: Which ad, news article, or product
to show to a user?

I Job choices: You have information regarding the jobs

I Food choices: You know the ingredients of the dish

I Etc. etc.

Interesting model for (e.g.,) treatment personalization.
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Bootstrap Thompson Sampling



Thompson sampling for contextual bandits

I Setup some model r = f (a, x ; θ)

I Choose prior Pr(θ)

I Observe D = (xt , at , rt)

I Use Bayes rule and sample θt′ from Pr(θ|D)

I Select action a that maximizes f (a, x ; θ) given xt′ and θt′

This can be hard if Pr(θ|D) is hard to sample from.



Bootstrapped Bandit2

I Thompson sampling works
well if posterior is known

I Not the case for complex
models

I What about the (double or
nothing) bootstrap
distribution?

I For 1, . . . , J online
bootstrapped replicates

K = 10, epsilon = 0.1
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2Kaptein, & Eckles (2014).
Scalable Thompson Sampling with the Online Bootstrap.
arXiv



Bootstrap bandit continued . . .

K = 10, epsilon = 0.02 K = 10, epsilon = 0.1
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Streaming Bandit: software



Streaming Bandit 3

I Back end solution for
streaming bandits

I Setup a REST server
to handle action
selection

I Recently released first
stable version

3Kaptein, M.C. & Kruijswijk, J. (2015).
Available on Github. https://github.com/MKaptein/streamingbandit



Design choice: learning vs. choosing

We identify two steps:

1. The summary step: In each summary step θt′−1 is updated by
the new information {xt′ , at′ , rt′}. Thus,
θt′ = g(θt′−1, xt′ , at′ , rt′) where g() is some update function.

2. The decision step: In the decision step, the model
r = f (a, xt′ ; θt′) is evaluated for the current context and the
possible actions. Then, the recommended action at time t ′ is
selected.

Implemented in getAction() and setReward() calls.



Online learning

Forces an online learning approach.

I Summation over datapoints:

I Version 1: ST =
∑T

t=1 xt
I Version 2: ST = ST−1 + xt

Linear vs. Quadratic function of T to compute.4

4Ippel, L., Vermunt, J., & Kaptein, M.C. (2015)
Streaming EM approximations. Under submission.
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Applications of the software:



Simple experiment using StreamingBandit

Summarize:
import libs.base as base

prop = base.Proportion(self.get_theta(key=" version",

value=self.action [" version "]))

prop.update(self.reward [" click "])

self.set_theta(prop , key=" version", value=self.action [" version "])

Decide:
import libs.base as base

propl = base.List(self.get_theta(key=" version"),

base.Proportion , ["A", "B"])

if propl.count() > 1000:

self.action [" version "] = propl.max()

else

self.action [" version "] = propl.random ()



Simple experiment using StreamingBandit 2

Decide:
import libs.thompson as thmp

propl = thmp.BBThompsonList(self.get_theta(key=" version"),

Proportion , ["A", "B"])

self.action [" version "] = propl.thompson ()



Streaming Bandit in practice: Lock in Feedback

Possible policy for the continuum bandit problem:

I a ∈ R
I Project together with Prof. Dr. Davide Iannuzzi

I Oscillate a with a know frequency

I Amplify r , and integrate to obtain first derivative.5

5Kaptein, M.C. & Iannuzzi, D. (2015)
Lock in Feedback in Sequential Experiments. Under submission.



Streaming Bandit in practice: Santander

Software currently used for contextual bandit trials

I Observe features of a customer requesting a loan

I Select an interest rate

I Observe acceptance of loan (r = f (IR, y))

I Objective: Choose interest such as to maximize profit
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Future



Personalized feedback and treatment selection



Questions?

Maurits Kaptein
Archipelstraat 13
6524LK, Nijmegen
0621262211
maurits@mauritskaptein.com


