Multi Armed Bandits and Applications

Dr. M.C.Kaptein Assistant Professor AI

4 December 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background

The multi armed bandit problem

Thompson sampling & optimal design

The contextual Multi-armed Bandit problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bootstrap Thompson Sampling

Streaming Bandit: software

Applications of the software:

Future

Background

Background

- MSc. Economic Psychology, Tilburg University
- PdEng. User System Interaction, University of Eindhoven
- Ph.D. Industrial Design, University of Eindhoven & Stanford University
- Post Doc. Marketing, Aalto School of Economics, Helsinki

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Assistant Professor Statistics, Tilburg University, Tilburg
- Founder PersuasionAPI.

The multi armed bandit problem

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Slot machines

Formal presentation

- For $t = 1, \ldots, t = T$
- Select and action a_t out of A_t. Often actions k = 1,..., k = K.
- Observe reward r_t (generated by some unknown distribution $F_k(r|\theta_k)$)

► Play according to some policy $\Pi : \{a_1, \dots, a_{t-1}, r_1, \dots, r_{t-1}\} \mapsto a_t$

Aim of a "good" policy

- Well, get as much reward as possible!
- Thus, maximize $\sum_{t=1}^{T} r_t$
- Or, minimize regret: $\sum_{t=1}^{T} (\Pi^*(t) \Pi(t))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exploration-Exploitation tradeoff

- Suppose observations X_k ~ Bern(p_k)
- Explore: $p_1 > p_2$? Play alternating arms to learn.
- Exploit: Play arm 1.

Very general trade-off: Exploring the outcomes of uncertain actions, versus choosing actions that one beliefs to be good.

Omnipresence of the tradeoff

Exploration vs. exploitation found in many places:

- Clinical trial: which medicine to subscribe?
- Online content selection: Which ad, news article, or product to show?
- Job choices: Try something new, vs. stick to what you have?

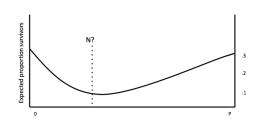
- ► Food choices: Try a new dish, stick to one you like
- Etc. etc.

Also known as Earning vs. Learning.

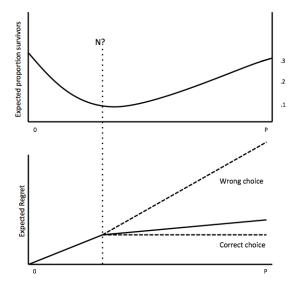
The randomized clinical trial

What is the regret of a simple RCT choosing between two medications?

- Simple choices: $X_1 \sim \text{Bern}(p_1 = .1),$ $X_2 \sim \text{Bern}(p_2 = .5)$
- Obviously: p₁, p₂
 unkown at start
- N patients in trial, P total patients in population
- Always
 Pr(Wrong) > 0

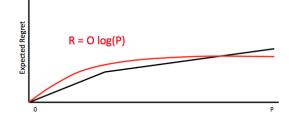


The randomized clinical trial: Regret



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Optimal policies



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thompson sampling & optimal design

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Compute or sample from $Pr(\theta|D)$. We can then select an action according to its probability of being optimal:

$$\int \mathbb{1}\left[\mathbb{E}(r|a,\theta) = \max_{a'} \mathbb{E}(r|a',\theta)\right] \mathsf{Pr}(\theta|\mathcal{D})d\theta \tag{1}$$

where 1 is the indicator function.

Thompson sampling Bernoulli Bandit

Thompson sampling in practice for the k-armed Bernoulli Bandit

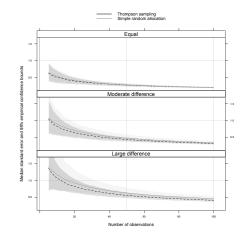
- Suppose again X_k ~ Bern(p_k)
- Use (indepedent) $Beta(\alpha_k = 1, \beta_k = 1)$ priors
- ▶ Generate random draw d_k from each k = 1,..., k = K Beta() distributions

- Select arm $k' = \max_k d_k$
- Update posterior $\text{Beta}(\alpha_{k'} + r_t, \beta_{k'} + 1 r_t)$

Thompson sampling is an asymptotically optimal strategy.

Experimental design as exploration vs. exploitation ¹

- Thompson sampling for optimal design
- Sample for most "informative" datapoints
- Assume heterogeneity of variances
- Select treatments based on posterior variance estimates



イロト 不得 トイヨト イヨト

-

¹Kaptein, M.C. (2014). The Use of Thompson Sampling to Increase Estimation Precision. *Behavior Research Methods*

The contextual Multi-armed Bandit problem

Extension: contexts

- For $t = 1, \ldots, t = T$
- Observe the world, $x_t \in \mathcal{X}_t$
- Select and action a_t out of A_t. Often actions k = 1,..., k = K.
- Observe reward r_t (generated by some unknown distribution $F_k(r|\theta_k)$)

► Play according to some policy $\Pi : \{x_1, \dots, x_{t-1}, a_1, \dots, a_{t-1}, r_1, \dots, r_{t-1}\} \mapsto a_t$

Examples of contextual bandits

- Clinical trial: which medicine to subscribe to a specific patient?
- Online content selection: Which ad, news article, or product to show to a user?

- Job choices: You have information regarding the jobs
- ► Food choices: You know the ingredients of the dish
- Etc. etc.

Interesting model for (e.g.,) treatment personalization.

Bootstrap Thompson Sampling

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

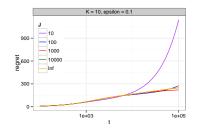
Thompson sampling for contextual bandits

- Setup some model $r = f(a, x; \theta)$
- Choose prior Pr(θ)
- Observe $\mathcal{D} = (x_t, a_t, r_t)$
- Use Bayes rule and sample $\theta_{t'}$ from $Pr(\theta|\mathcal{D})$
- Select action a that maximizes $f(a, x; \theta)$ given $x_{t'}$ and $\theta_{t'}$

This can be hard if $Pr(\theta|\mathcal{D})$ is hard to sample from.

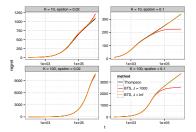
Bootstrapped Bandit²

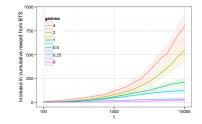
- Thompson sampling works well if posterior is known
- Not the case for complex models
- What about the (double or nothing) bootstrap distribution?
- ► For 1,..., J online bootstrapped replicates



²Kaptein, & Eckles (2014). Scalable Thompson Sampling with the Online Bootstrap. arXiv

Bootstrap bandit continued ...





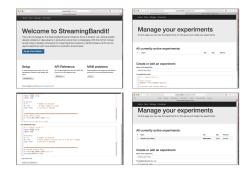
◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Streaming Bandit: software

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Streaming Bandit ³

- Back end solution for streaming bandits
- Setup a REST server to handle action selection
- Recently released first stable version



イロト 不得 トイヨト イヨト

э.

Available on Github. https://github.com/MKaptein/streamingbandit

³Kaptein, M.C. & Kruijswijk, J. (2015).

Design choice: learning vs. choosing

We identify two steps:

1. The summary step: In each summary step $\theta_{t'-1}$ is updated by the new information $\{x_{t'}, a_{t'}, r_{t'}\}$. Thus,

 $\theta_{t'} = g(\theta_{t'-1}, x_{t'}, a_{t'}, r_{t'})$ where g() is some update function.

2. The *decision* step: In the decision step, the model $r = f(a, x_{t'}; \theta_{t'})$ is evaluated for the current context and the possible actions. Then, the recommended action at time t' is selected.

Implemented in getAction() and setReward() calls.

Online learning

Forces an online learning approach.

Summation over datapoints:

• Version 1:
$$S_T = \sum_{t=1}^T x_t$$

• Version 2:
$$S_T = S_{T-1} + x_t$$

Linear vs. Quadratic function of T to compute.⁴

⁴Ippel, L., Vermunt, J., & Kaptein, M.C. (2015) Streaming EM approximations. *Under submission*.

Applications of the software:

Simple experiment using StreamingBandit

Summarize:

```
import libs.base as base
prop = base.Proportion(self.get_theta(key="version",
    value=self.action["version"]))
prop.update(self.reward["click"])
self.set_theta(prop, key="version", value=self.action["version"])
```

Decide:

```
import libs.base as base
propt = base.List(self.get_theta(key="version"),
base.Proportion, ["A", "B"])
if propl.count() > 1000:
   self.action["version"] = propl.max()
else
   self.action["version"] = propl.random()
```

Simple experiment using StreamingBandit 2

Decide:

```
import libs.thompson as thmp
propl = thmp.BBThompsonList(self.get_theta(key="version"),
    Proportion, ["A", "B"])
self.action["version"] = propl.thompson()
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Streaming Bandit in practice: Lock in Feedback

Possible policy for the continuum bandit problem:

- ▶ *a* ∈ ℝ
- Project together with Prof. Dr. Davide lannuzzi
- Oscillate a with a know frequency
- Amplify r, and integrate to obtain first derivative.⁵

⁵Kaptein, M.C. & Iannuzzi, D. (2015)

Lock in Feedback in Sequential Experiments. Under submission.

Streaming Bandit in practice: Santander

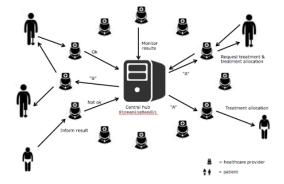
Software currently used for contextual bandit trials

- Observe features of a customer requesting a loan
- Select an interest rate
- Observe acceptance of loan (r = f(IR, y))
- Objective: Choose interest such as to maximize profit

Future

<□ > < @ > < E > < E > E のQ @

Personalized feedback and treatment selection



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Questions?

Maurits Kaptein Archipelstraat 13 6524LK, Nijmegen 0621262211 maurits@mauritskaptein.com

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?