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Chapter 1

Lecture 1: Introduction

1.1 Structure of the course / admin

Welcome to the course “Al at a web scale”. In this course we will try to address Al and
machine learning challenges on the web. The course consists of four main parts:

1. Classic online algorithms: In the first part of the course we will cover “classic”
algorithms that currently drive the web. We will cover basic search, spam filtering,
collaborative filtering, etc.

2. Technical necessities: In the second part of the course we will cover a number of
technical details regarding web technologies. We will cover data structures, databases,
and (briefly) Map/Reduce.

3. Modern challenges: In this part of the course we will cover more modern ideas re-
garding Al on the web. We will cover (contextual) bandit problems and streaming
(or online) analysis

4. Practicals: In the second half of the course we will try to address a number of
practical, and industry relevant, problems.

The aim of the course is to get you up to speed with the developments on the web, and
inspire you to develop novel (Al) solutions for web-related problems.

For this course some background in basic probability theory and statistics is assumed, as
well as exposure to programming. We will try to use Python as our programming language
of choice throughout, so make sure you read up on Python basics. If you bump into troubles
with background / prerequisites please let me know and we will try to find a solution.



1.1.1 Overview of the course, planning

The following table gives a brief overview of the planned meetings in this course and the
topics I intend to address.

Date Nr Type Topic
03/02/15 1  HC Introduction
10/02/15 2 HC Spam filtering
10/02/15 1 WC
No lectures
24/02/15 3  HC Collaborative Filtering
24/02/15 2 WC
03/03/15 4  HC Networks and network statistics
03/03/15 3 WO
10/03/15 5  HC Search
10/03/15 4 WC
17/03/15 6  HC Hierarchical data structures
17/03/15 5 WC
No lectures
31/03/15 7  HC SQL and noSQL databases
31/03/15 6 WC
07/04/15 8  HC Map Reduce & Rest API’s
07/04/15 7 WC
14/04/15 Midterm exam
21/04/15 9  HC Streaming analysis
28/04/15 10 HC Stochastic Gradient Descent
No lectures
12/05/15 11 HC Bandit problems
19/05/15 12 HC Contextual bandits
26/05/15 13 HC Questions and Answers
27/05/15 1  Practical Streaming contextual bandit challenge
03/06/15 2  Practical
10/06/15 3  Practical
16/06/15 Final Exam
17/06/15 4  Practical
24/06/15 5  Practical
01/07/15 6  Practical Team presentations




1.1.2 Lecture types

The course consists of three lecture types: Lectures, Tutorials, and Practicals. During the
lectures I will talk, and you will primarily listen and ask questions: these lectures are more
theoretical. During the tutorials you will be asked to (individually) work on assignments
to implement the things we talked about during the lectures. Finally, in the practicals
you will work (in groups) on real-live challenges, and in here you are free to implement
everything you have learned in a way you think fits.

1.1.3 Grade

The grade for this course is composed of several parts:

e Midterm exam: In April we will have a midterm exam, this is a written exam during
the regular time of the lecture. This will count for 25% towards your final grade.

e FEzam: Half June there is the final written exam (also during the lecture time). This
will count for 50% of the final grade and will cover all topics up to that point in the
course.

e Practicals: You will have to present, in the final practical session, your (group)
achievements in the practical sessions. These presentations will be graded and will
count for 25% towards your final grade.

There will be a resit for the midterm and final exam (in one go). There is no opportunity
to resit the practicals (outside of taking them again next year). The midterm and exam
grade will carry over one year, as will the practical point. After a year the only way to
retake the course is by doing all anew.

1.1.4 Contact

If you have any questions regarding the course, its structure, the grades, etc. please do not
hesitate to ask them. Try saving up your questions for the lectures so we can deal with
them in front of the whole group. If things are urgent, then send me an email: (m.kaptein
[at] donders.ru.nl).



1.2 Probability review

Some basic probability notation and facts you should know regarding probability:

Probability of event A (definition):

P(A) : P(A)>0, Y P(A)=1
A

Joint probability of events A and B =

P(A, B)
Conditional probability of A given B =
P(A,B)
P(A|B) = a

Product rule:
P(A,B)=P(A| B)P(B)=P(B| A)P(A)
Chain rule (example for 4 events):

P(Ay, A3, Ag, A1) = P(A4|As, Az, A1) P(As]|Ag, A1) P(A2|A1)P(A1)

Marginal probability of A given all possible values of B =

P(A) =) P(A,B)
B

(which logically becomes an integral if B is continuous).
Independence of A and B:

P(A,B)=P(A)P(B)
(remember: independence means multiply)

Bayes’ Rule:
P(A|B)P(B)  P(A|B)P(B)
P(4)  YpP(A|B)P(B)

(7)=6t

P(B|A) =

Combinations:



1.2.1 Distributions (small selection)

A random variable is a function that maps events to the real number line. A probability dis-
tribution assigns a probability to each of the possible outcomes of a random variable.

Discrete distributions

The probability mass function (PMF) of a bernoulli distribution with parameter p is
P(X=2) = p"(1—p)® (1.1)

where z € {0,1}.

The probability mass function (PMF) of a binomial distribution with parameters p and n
is

P(X =) = (”)www (1.2)

where x is the number of ”successes”.

The binomial distribution is the expected distribution of outcomes in random samples of
size n, with probability p of success. Mean and variance of binomial distribution:

po= np
g

0'2 = npq

I
5
Q

Or, more generally: the expected value of E(X) = > zP(z) (or E(X) = [z f(z)dz) and
VAR(X) = E[(X — E(X))’]

The Poisson distribution can be used to approximate the Binomial distribution when one
event is rare (p < 0.1), and the sample size is large (np > 5).

A Poisson variable Y must be
1. Rare: Small mean relative to the number of possible events per sample
2. Random: Independent of previous occurrences in the sample

This distribution can model the number of times that a rare event occurs, and test whether
rare events are independent of each other. The parameter A is the expected number of



successes. If X is binomial with large n and small p, the number of success is approximately
a Poisson random variable with A = np.

The probability mass function of a Poisson distribution is

P(X =2x)= e_)‘g. (1.3)

A is the only parameter needed to describe a Poisson distribution. It is equal to both the
variance and the mean:
A=p =0 (1.4)

Continuous distributions

The probability density function (PDF) for a uniform random variable X on interval («, f3)

is
1 if a<x<p

f(X)=1 B-a (1.5)

0 otherwise

and the cumulative density function (CDF) is g:g for = € [o, B].

The mean and variance of X:

_ BHa
=
o2 = (8=a)
12
The normal probability density function is
1
J(X) = e 2 (16)

oV 2T

with parameters p and o2 (which are also the mean and variance of the distribution). The
curve is symmetric about the mean.

i+ o contains 68.3% of the items
1+ 20 contains 95.5% of the items
i+ 30 contains 99.7% of the items

We will encounter different distributions. You should know what PMF’s, PDF’s, and
CDEF’s are.



1.2.2 Central Limit Theorem

The Central Limit Theorem states that as sample size increases, the means of sam-
ples drawn from a population having any distribution will approach the normal distri-
bution.

As the number of samples increases, the Central Limit Theorem states that the:

e distribution of sample means will approximate normal, regardless of the original
distribution

e mean value of sample means will equal the population mean

e standard deviation of the sample means (standard error of the mean) depends on
population standard deviation and sample size.

There are many central limit theorems at various levels of abstraction. Central limit
theorems are still an active area of research in probability theory.

1.2.3 Maximum Likelihood: The basics

Given observations x1,...,x, we often want to estimate the parameters of the data-
generating distribution. A very common approach is maximum likelihood estimation:
MLE.

The basic idea is simple. Suppose our data are presumed to be LI.D. (independent and
identically distributed) R.V.’s from a Bernoulli(p). We consider the likelihood function,
which is the density function regarded as a function of its parameters:

n

L(0|Z) = L(plar, ..., zn) = [[p" (1 - p)' ™ (1.7)
=1

(remember: independence means multiply).

We now look for the value of p that maximizes the above function. Obviously we set the
derivative to zero. However, this is tricky due to the product term. Thus, it is a custom
to work with the log likelihood function:

l(plxi,...,zn) = In(L(p|lx1,. .., zn)) (1.8)
= lnp(z z;) +In(1 —p)(n — sz) (1.9)
=nzlnp+n(l —z)In(1 —p) (1.10)

where Z is the sample mean.

10



Computing the derivative gives:

O 1l7) = n ( - ) (1.11)

op P

which is zero when p = Z indicating that the sample mean is the MLE of the parameter of
the Bernoulli. Thus (%) = z.

We will encounter MLE estimation (and other types of parameter estimation) throughout
the course. However, you should at least follow the structure of the above argument. Note
that this is not an algebra course.

For a thorough introduction to probability theory please make sure to buy and read
(Williams and Williams, 2001).

1.3 Basic Python

Here are some very basic things about Python you should know (but really, you should
know quite bit more...). A few examples of Python code which do exactly what you would
expect:

print (’Hello_world. ")

print (’Hello_world. ")
print (4 + 5)

Data types are the building blocks from which everything else is built. In Python, some
core data types are:
e Simple Types: numbers and strings
— numbers: 3, 12.443, 89, ...
— strings: ”hello”, 'manny’, 734", ...
e Complex Types: lists and dictionaries (& sets & tuples)
— lists: [1,2,3], [1,2,”a”], ["john”, ”george”, "paul”, "ringo”], ...
— dictionaries: {"a”’:1, "b":16}, ...

All of these can be stored into variables. Python is dynamically typed: you do not have
to declare what type each variable is. It is good practice, however, to not switch between
types for a given variable

Python can work just like a calculator:

11



>>> 242

4

>>> 3/2

1

>>> 3/2.

1.5

X =2+ 2 #x =4
x = 3/2 tx=1

x = 3/2. #x=1.5

Python has integers and floating point numbers (& complex numbers), and operations to
convert between them:

>>> float(3)

3.0

>>> int(4.123)

4

x =3

y = 4.123

x1 = float(x) # x1 = 3.0
y1 = int(y) #yl =4

You can print floating point numbers with different levels of precision, but we won’t cover
that here.

What is a variable? A variable is a name that refers to some value (could be a number, a
string, a list etc.)

1. Store the value 42 in a variable named foo
foo = 42

2. Store the value of foo+10 in a variable named bar
bar = foo + 10

What is the difference between an expression and a statement? An expression is something,
and a statement does something.

Ask the user to input a name, and store it in the variable:

name = raw_input(’enter your name: ’)
greet = ’hello ’ + name

12



. Ask the user to input a number, and store it in the variable foo

foo = int(raw_input(’enter a number: ’))

Add foo and bar together
foo + bar

Calculate the average of foo and bar, and save it in a variable named avg
avg = (foo + bar)/2

What is a function? A function is a mini-program. It can take several arguments, an
returns a value.

What is a module? Python is easily extensible. Users can easily write programs that
extend the basic functionality, and these programs can be used by other programs, by
loading them as a module:

1.

load the math module
import math

Round 35.4 to the nearest integer
math.round(35.4)

Round the quotient of foo and bar down to the nearest integer
math.floor(foo/bar)

Saving and executing programs: Save the following in file “hello.py”:

# this script prints ’hello, world’, to stdout
print (" hello , .world”)

And then run the program:
python hello.py

String Basics:

e Strings must be enclosed in quotes (double or single)

e Strings can be concatenated using the + operator

e Many ways to write a string:

— single quotes: ’string’
— double quotes: "string"

— can also use """ to write strings over multiple lines:

13



>>> ""i<html>
. <body>
.. something
. </body>
. </html>

’<html>\n<body>\nsomething\n</body>\n</html>\n’
e There are string characters with special meaning: e.g., \n (newline) and \t (tab)
e Get the length of a string by the len function
String indices & slices: You can use slices to get a part of a string

>>> S = llhappy n
>>> len(s) # use the len function

5

>>> s[3] # indexed from 0, so 4th character
)p)

>>> s[1:3] # characters 1 and 2

)ap)

>>> s[:3] # first 3 characters

)hap7

>>> s[3:] # everything except first 3 characters
J J

py

>>> s[-4] # 4th character from the back

)a7

Obviously, there is lots more to know about Python, but you should, prior to the second
lecture, at the bare minimum check out these functionalities.

1.3.1 Packages used in the course:

In this course we will be using a number of modules frequently:
e pandas
e numpy
e scipy
e matplotlib

Note that on blackboard I will add a number of useful Python resources.

14



I want to recommend the use of pandas to handle data. Please check http://pandas.
pydata.org/pandas-docs/stable/10min.html and work through the examples presented
there to get some feel for the whole thing.

You can run python scripts directly from the terminal, and you can use and kind of text-
editor you would like. However, we recommend using Spyder: https://pythonhosted.
org/spyder/. Please use Python 3.z, as we will be using this in the tutorials.

Note that a part of this quick introduction into python is inspired by the materials that
can be found here: http://cl.indiana.edu/~md7/12/555/slides/

15



Chapter 2

Lecture 2: Naive Bayes

This second lecture we will ease into the topic by looking at a very classical AI (or machine
learning, I will use those words interchangeable throughout) algorithm that has proven very
useful on the web for a very specific task: spam classification. It is conservatively estimated
that about 85% of the worlds emails are spam, hence picking them out automatically
makes sense and is used everywhere. We will cover two variations of the Naive Bayes
(NB) algorithm (which is not really naive, nor is it really Bayesian) with the following
goals:

e You will learn how to represent a piece of text (e.g., email) as a feature vector

e You will learn how to get from a mathematical model to an actual spam classifier
e You will understand Laplace smoothing

e You will understand different ways in which to setup a NB classifier

e You will make one yourself (in the tutorials).

For additional info on this topic both (Hastie et al., 2013) and (Bishop et al., 2006) provide
excellent introductions (and extensions beyond what we cover here).

2.1 Standard Naive Bayes for spam classification

Our aim is to predict whether or not an email is spam or not spam (or rather, the probability
that an email is spam). Lets denote y = 1 for a spam email and & for the feature vector
(e.g., a representation of the email text). Our aim is to estimate P(y = 1|z). We can
now choose to represent the feature vector Z (and I will drop the # notation and use x)

16



as depicted in Table 2.1. Note that we are presenting the presence of each word in our
dictionary, and we are ignoring the frequency of occurrence or the order of words.

a 0
aardvark 1

buy 1
77 0

In this setup the feature vector x denotes for z1,...x,, where n is the number of words in
a dictionary, whether or not the word appears in an email. Thus z € {0,1}". From here

on I will use :rg.i) to refer to the i-th training example (e.g., the i-th email) and the j-th
word. Note that this is only one possible representation, but its the one we will work with

for now.!

As stated above, our aim is to estimate P(y = 1|x), the probability of spam given a specific
email. However we cannot estimate this directly. What we can estimate however — given
a training set — is the probability of spam in general P(y = 1), and the probability of our
feature vector given that an email is spam P(x|y = 1). We can thus use Bayes theorem
(which is where the Bayes part in the name of the algorithm comes from, but technically
we are using a frequentist approach for estimation, see below):

P(x|y)P(y)

Plylr) = =505

(2.1)

= P(zly)P(y)
~ P(zly=1)P(y = 1) + P(z]y = 0)P(y = 0) (2.2)

The latter formulation requires us to estimate p(y = 1), the probability of a spam email,
and P(z|ly = 1), the probability of the feature vector given a spam email. The latter
requires estimation of the joint probability P(x1,x9,...,2,|y) which, given the chain rule
of probability is equal to:

P(z1,x9,...,2,|y) = P(x1|ly)P(x2ly, x1) P(zs|y, x1,22) . . . (2.3)

which looks cumbersome given the conditioning on both y and the other x’s. This is where
the second part of the name Naive Bayes comes from, because we will make the so-called

!Note that this representation gives us, if n is large (which it likely is, since n is the number of words
in a dictionary) 2" possible feature vectors. We could also choose to model P(z) using a multinomial
distribution with 2" — 1 params, but that is hard.

17



Naive Bayes assumption that the z;’s are conditionally independent?:

P(z1,22,...,2,|y) = P(x1]y)P(x2ly)P(x3ly) . .. (2.4)

= [ PG (25)

We thus obtain a model — if we treat, e.g., P(y) as a Bernoulli(¢), with the following
parameters;

Djly=1 = Plzjly =1) (2.6)
djly=0 = P(zjly = 0)
¢y = P(y)

which we can estimate by maximising the likelihood
M . .
£(¢y7¢j|y:17¢j\y:1) = Hp(x(Z)ay(Z)) (29)
i=1

where P(z(),5(®) denotes the joint probability of the i-th training example.

Note that, as described in Lecture 1, we can now work out all the algebra. We can use the
product rule to specify P(z,y). Then, we can derive the log likelihood function I(0|z,y),
take its derivative, and set to zero.?> Suffices to say, that if you work things out, you get to
the following estimates for the parameters:

SM el =1,40 =1}

Pt = TS 0 = 1) @10)
M el = 1,40 =0}
P TSI i =0y =
M (i) _
by = > Hy'W =1} (2.12)

M

where M denotes the number of training examples and 1{} is the indicator function (‘“re-
turns” 1 when the expression inside is TRUE, 0 otherwise). Note that to use Bayes Theorem
that P(zly =1) =[], P(zily = 1)

That sums up NB.

2Note that this implies that learning that word A is in a spam email tells you nothing about learning
that word B is in a spam email. Which obviously is not true, but works well in practice and is an often
used trick to deal with large dimensional problems.

3See http://www.cs.columbia.edu/~mcollins/em.pdf if you are interested in the algebra.

18



2.1.1 Laplace smoothing

In practice, we often encounter a slight problem: suppose we ad a new word to our dictio-
nary (e.g., n+ 1), or that some words that are in our dictionary are not in our training
set, we get the following problem:

P(znyily=1) =0 (2.13)

and similarly for P(z,+1]y = 0). That means that our NB will encounter % at some point,
which is undefined.

This is often “solved” by using Laplace smoothing which is defined as follows: Given
P(y) ~ Multinomial(1, ..., k) we estimate:

M 1y =1} +1

Ply=j)= M E (2.14)
which in our NB case gets us to
X el =1,y =1} 41
Pjly=1 = M () — (2.15)
Yoici H{y® =1} +2
5 T Me =140 =0p+1 o0
e = ‘ )
w S 1y = 0} +2
v A
M 11,0 =1 1
5= SO =1+ o

M+2

Note that with Laplace smoothing NB actually becomes “proper” Bayesian since from a
Bayesian point of view, it corresponds to using a symmetric Dirichlet distribution with
parameter 1 as a prior.

Since this is not a thorough course on Bayesian statistics, we will not dig into the nitty
gritty of the Dirichlet distribution. However, it is good to consider that we could approach
the problem of estimating the parameter p of a Bernoulli distribution not using MLE, but
rather using a Bayesian framework. Here, we would put a prior distribution on p (which
for generality I will now denote #), and then compute the posterior distribution:

p(X | 0)p(0)

p(01 %) = P

o p(X [ 0)p(0) (2.18)
If we use a Beta() prior, which is conjugate, we obtain a Beta() posterior. Laplace smooth-
ing in this case corresponds to using a Beta(1,1) — which is a uniform — prior for . The
Dirichlet is merely the multivariate generalization of the Beta. I will talk a bit more about
this in class.

19



2.2 Variation on standard Naive Bayes

In the previous implementation of NB — of which many versions exist — we did not consider
the length of the email, nor the number of times a word occurs. The model we discussed
is called the “Multivariate Bernoulli” model.

We can change these assumptions and derive the so-called “Multinomial Event” model.
Here we create a slightly different feature vector x where we use x = x1,...,n;, where n;
denotes the number of words in email i and z; € {1,...,w}, where w is the number of
words in the dictionary (sorry for the change in notation). Thus, the feature vector indexes
for each word, in order of appearance, which word of the dictionary it is.

We can now specify the joint probability as

Pa.y) = (] Pla;19) P(v) (2.19)
j=1
with parameters:
bty = Plaj = Kly = 1) (2.20)
by = Pla; = Kly = 0) (2.21)
by =Ply=1) (2.22)

where k is the k-th word in the dictionary. Given a training set we can work out the ML
estimate of the parameters:

SH {9 = 1337 e = k)
S H{y® = 1,

S 1y =0} 5 1{af” = k)
S 1{y® = 0},

¢y =Ply=1) (2.25)

so, the numerator of ¢,—; says: “sum over all the spam emails and count the number of

times you observed the word k in spam emails”, and the denominator says: “sum over all

spam emails, and sum the length of that email”. So the last one is the total length of your

spam emails, and the ratio is the fraction of words that are word k out of the total length

of your spam emails. That is the estimate of the next spam email generating the word k.
For Laplace smoothing we add 1 to the numerator, and w to the denominator.

Drpymt = (2.23)

Pkly=0 = (2.24)

Note that some of the material presented in the lecture was inspired by the assignment pre-
sented here: http://www.cs.cmu.edu/~wcohen/10-605/assignments/hashtable-nb.pdf.
For another explanation of NB see https://www.youtube. com/watch?v=qRI3GKMOFrE.

20



2.3 Assignment

For this assignment we will be working with the ham vs. spam dataset which can be found
onhttp://www.aueb.gr/users/ion/data/enron-spam/. Do the following in python:

1.

Open the data in “Enron 1”7, and create a useable dataset using a dictionary found
on http://www.manythings.org/vocabulary/lists/1/

Estimate your NB parameters ¢ for the multivariate Bernoulli model.

Classify “Enron 2” into spam or not spam and see how good you are doing. What
measures will you use to show how good your classifier is?

. Discuss how you would deal with “new” words (e.g., words that are in the email but

not in your dictionary)?

If you feel courageous, also implement the Multinomial Event model.
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Chapter 3

Lecture 3: Collaborative
Filtering

In this lecture we will cover (a few versions of) very often used methods on the web that are
collectively known as collaborative filtering. Collaborative filtering is often used in so-called
recommender systems: They are used by Amazon.com to recommend you new products,
and by Netflix.com to find the movies that you might like.! The basic aim of collaborative
filtering methods is to match items ¢ with users u. Since the items could be anything
(movies, friends, news articles, etc.) the methods are very generally applicable.

The goals of this lecture are the following:
e You will learn to represent user ratings in a useful way for recommendation
e You will learn about (basic) neighborhood based collaborative filtering

e You will learn about distance measures and how to use these to provide recommen-
dations.

e You will be able to implement a basic recommender system.

This lecture is—I guess—relatively easy. However, we are also still getting a hang of
Python, so I don’t want to force too many novel theoretical constructs. Also, note that
recommender systems and collaborative filtering methods are a large (sub)-field of computer
science, and hence you will be able to find many articles detailing implementations for
specific context. This lecture is mainly intended to give a broad overview of the reasoning
behind the methods, and to give you a feel for the pro’s and con’s.

'Note that not all recommender systems use collaborative filtering.
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3.1 Formulation of the problem

The problem of recommending new product, news articles, friends, etc. can be formalized
using a triplet (u,y, ), where u is a vector describing the user (in its simples case just a user
identifier), y is a vector describing the item (again, in its simplest case just an identifier,
and r is a rating. Often » € {1,...,k, L} where L indicates an empty rating.? If we treat
the u and y vector merely as indexes, then a simple dataset containing the data used to
compute recommendations is given in table 3.1. The table describes users in columns (lets
index these running from 1 to n, and the rows describe the items (lets take these to run
from 1 to m).

Table 3.1: Example of dataset used for (simple) collaborative filtering.
item id. Angelica Bill Chan Dan Hailey Jordyn Sam Veronica

1 3.5 2 5 3 ) 3
2 2 3.5 1 4 4 4.5 2

3 4 1 4.5 1 4

4 4.5 3 4 5 3 5
5) ) 2 ) 3 ) ) 4
6 1.5 3.5 1 4.5 4.5 4 2.5
7 2.5 4 4 4 5 3
8 2 3 2 1 4

Note that you could use a python dictionary to store the data, or (e.g.,) a pandas data
frame. This is what we will be using in the assignments. However, also note that in reality,
if you are Amazon.com or the like, the number of users and items might both be in the
millions (hence large), and storing the data in memory is not feasible. Data would be
stored in a database (either SQL or no-SQL, depending on the structure and the use of
the data). We will discuss different methods of storing the data in later lectures.

In the literature a distinction is made between explicit ratings — e.g., ratings filled out on
a scale by users — and implicit ratings: ratings derived from observations of the behavior
of users. Often, on the web, in the second case r € {0,1, L} where 1 denotes a click on the
item.

2Don’t ask me why L is used for “missing”. I think its confusing since it is used for other things as well,
such as (statistical) independence. . .
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3.2 Neighborhood based collaborative filtering

One of the simplest collaborative filtering algorithms is based on the simple idea that to
recommend an item y to a user v we find a user u* that is similar to the current user,
and we recommend whether he / she rates high. To do so, we need to compute a distance
d(u,u*) for every user pair. The simplest of such distance measures would be

d(u,u*) = |ri =7} (3.1)
i=1

where n denotes the total number of items that both users have rated. Note that we would
in practice not only sum over items, but also sum over all possible user to find the closest
user. This can be computationally complex (depending on the implementation it is of order
O(nm)). Also note that users might differ in the number of “jointly” rated items, and thus
we might need to correct d(y,u*) for this.

After computing the distance for each user pair we can select the “closest” user (or set of
close users) and subsequently select items that the closest users rate high.

3.2.1 Distance measures

The closeness measure defined above is called the manhattan distance. You might be more
familiar with Euclidean distance:

d(u,u*) = (3:2)
Note that these are two special cases of what is called the Minkowski Distance Metric:
" 1
d(u,u*) = Y| =) (3:3)
i=1

For higher values of » more distant observations are given more and more weight. Dividing
by the total number of jointly rated items n is often used to correct for differences in the
number of rated items.

Note that the algorithm described above is an instance of a k-nearest neighbor algorithm
(which you might have heard of).
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3.3 Predictions

After finding the k closest users to the user of interest, we can obviously select the highest
rated items by the close users as recommendations for the current user. We then implicitly
use the rating by a “close” user as the predicted rating of the user of interest, and we search
for the highest predicted values. Many other methods of getting to predicted values exist
(see also the section on Model based approaches below), but one that is relatively common
(and coined Resnick’s algorithm) is the following:

To predict the score of a user u for a item i we can use:

Z d(ua U)(Tv,i - 771;)
> ld(u, v)]

where 7, is the average rating of user u, and the sum is over v € V nearest neighbors
(the number of which is selected by you). Note the here often as a distance measure the
Pearson correlation between users (see below for the formula for items) is used. Contrary
to the previous measures we discussed, for correlations higher scores mean a closer distance
(inspect the formula to see that this makes sense). So, if we want to use (e.g.,) Minkowski
distances we have to invert them in some way.

Du,i = Ty + (34)

Looking at the formula we see that the prediction is based on the average score of the user

herself 7, (which is controlling for the overall “positivity” of the user), and subsequently we

are adding the ratings of neighbors: here we are also controlling for the average tendency

to rate items of the neighbor, (r,; — 7,), and we are weighting the contribution of each
d(u,v)

neighbors rating’s by their distance: (informally:) S~ Td(a0)]

3.4 Item similarity based filtering

Next to user similarity based filtering, people often use item similarity based filtering. This
is easily motivated by the example that a user clicks on a product, and next to that product
we would like to present other products that the user might also like.

We are in this case looking for items that are similar to other items. Obviously, we could
use a nearest neighbor computation on the items d(i,i*) = /> i (r}, — % )2, but often
other measures of similarity are used in item based filtering.® Let’s consider items i and j
(instead of ¢*, since I think the i* can look confusing) and define the following similarity
measures between items:

3Yes, off course we can use anything that is here introduced for items also for users and vice-versa.
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Correlation based similarity (just pearson rg, really):

>uer (T — ) (rh, — )

Ve (rh = 2 e (= )2

sim(i, §) =

where 7* denotes the average rating of item i over all users u € U.

Equation 3.5 can also be expressed as r; ; = %. Since correlations are a building

block of so many Machine Learning and Statistical methods we will briefly catch up on the
interpretation of correlations and their relationship to linear models during the lecture. In
any case: 0 < r;; < 1.

Cosine-based similarity:

. i3]

S’Lm(’b,]) = COS(i,j) = m (36)
2 2

where 7 denotes the vector of all ratings ¢+ and j have in common, - denotes the dot product
(sum over the product of elements) between vectors i and j, and finally ||7||o denotes the
Eucidean norm (square root of the sum of squared elements) of vector i. For non-negative
ratings 0 < sim(i,j5) <1

Adjusted cosine based similarity:
ZuEU(TQiL - fu)(ri — Tu)
\/ZUGU(T’Z - Fu>2\/ZuEU(r7JL - fu)2

which is very similar to the correlation based similarity but the average rating of (e.g.,)
item 4, 7 is replaced by the average rating of the current user, 7.

sim(i,j) = (3.7)

Note that basically all the measures presented above (Correlation, cosine similarity, and
adjusted cosine similarity) are variations on the dot product of two vectors.

3.5 User, Item, or mixed filtering

Which distance measure, or which approach (user vs. item based) you should use depends
on your own problem. Thus, make sure you try and test. There are a few general things
to note however:

e If the data is grade-inflated (thus, different users use the scales differently) then make
sure to correct for this using (e.g,) adjusted cosine based similarity.
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e If the data is very dense (thus, you have lost of observations for all pairs) then
Minkowski distance based algorithms often work well.

e If the data is very sparse, cosine similarity is easy to use and often works well.

Also, there is no need to pick either user based or item based filtering: it is pretty obvious
that the two can be combined in numerous ways. One obvious way to combine them is to
— once a user arrives lands at a product page and you have 6 items to recommend — to use
item based recommendations for half of your items and user based recommendations for the
other half. Obviously, you can also weight the recommendations in more intricate manners.
One thing that is often used is to select the k nearest users to user u, and subsequently
weight the ratings of these near users using the correlations between ratings to derive a
final rating for a new product (as we have seen above using Resnick’s algorithm).

3.5.1 Problems

Collaborative filtering methods as described above are definitely not without problems.
Let’s name a few (that we did not cover earlier):

e Sparsity: Often, there are millions+ users, and there might be only a very small — or
zero — number of joint ratings between u and u*.

— This might be solved using imputation: (e.g.,) using a model to predict the
missing values. However, this is often not a good idea when the number of
missing values is large (which it often is in the case of recommender systems),
so you might look for other ways.

— Sparsity is a problem for the predictions, but can be useful to cut down on
computational complexity: the sparsity can often be explicitly used to design
fast algorithms.

e Scalability: User based collaborative filtering grows, in computational burden, both
with the number of users as well as with the number of items. These quickly become
too large.

— Here smart storage of the data, utilization of the sparsity, offline computations,
etc. can all help to solve the problem.

o Comparability / grade inflation: Some users might give, on average, higher ratings
then others. Thus, two users who’s “pattern” of ratings (e.g., 71 > ro > r3) com-
pletely correspond might still have very different distance measures.

— Standardization of scores might help.
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— We could also compute distance measures based on rank scores instead of actual
scores.

Cold start: What do we do with items for which we do not have any ratings? How
do we obtain ratings if we never recommend them?

— Impute? This is actually a hard problem to solve.

— Use properties of the items to get a head-start.
New users: What do we do with new users?

— Same as above.

— Use properties of the users to get a head-start.

Owverfitting: For example in user based filtering, whomever is closest might be pure
luck. How do we prevent capitalizing on random agreements?

— You probably do not want k£ (in a method based on k nearest neighbors) to be
very small, and you want to average over ratings.

Curse of dimensionality: If the number of dimensions is extremely large, then the
closest or most similar items or users might still be very dissimilar in practice.

— You might want to introduce minimal similarity bounds to make sure that what
is “most similar” is indeed similar, and not least dissimilar.

— Also note that in very high dimensions, basically every distance is large, and
the differences (in the limit) vanish. This can be a problem that needs to be
solved by mapping to lower dimensions.

Changes over time: The algorithms above do not at all consider the possibility that
ratings and preferences might change over time.

— Hard problem ...

Cost to update: Next to general computational complexity, the above algorithms are
costly to update when the data changes.

Effect of the recommendations: In practice, recommendations will hardly happen us-
ing a static data-set (which is what we have been considering up to now. Rather,
recommendations will actually be used in (web) applications, and the recommen-
dation will lead to new data. In this dynamic setting the recommendation itself
influences the data that you collect. Hence, you have to take into account the effect
of your recommendation on the observed data.
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3.6 A brief introduction to different approaches

Recommender systems (of which collaborative filtering approaches are an instance) are an
active area of research (see, e.g., Sarwar et al., 2001; Marlin, 2004) .* Collaborative filtering
approaches are only one possible way to approach the problem. Here I highlight another
avenue of attack that is also often used.

We could approach the problem of recommending an item ¢ for user j by setting up a
simple linear regression model (which you should understand thoroughly, if not, look it
up). For example:

7“3‘:0 = Bo + Brurj + Baug; + -+ ﬁkfﬂ;‘!:c + 5k7"§!:0 te€
=XfB+e

where, with admittedly slight abuse of notation, I am trying to denote that we can try to
model rézc, the rating of a specific item i = ¢ by user j using a (linear) combination of
properties of the user (here denoted by w1, u2;) such as her age and gender, and / or earlier
ratings of that user of other items 7#=¢. With a flexibel representation of the design matrix
X we can actually setup pretty complex models to predict the ratings on items and we can
setup a regression model for each i to predict the user ratings. Note that the regression
model “automatically” solves the comparability problem by weighting the importance of
features.

The regression model can be fitted using Maximum Likelihood (discussed for these types
of models in more detail in Lecture 6). This gives you an estimate of the vector 8 which
you can use to make predictions. Note that the above specification leads to a large number
of regression models, at least one for each item. Thus, the above approach of specifying
a linear model for each item separately also has a severe dimensionality problem in the
number of items: we will need to fit possibly millions of regressions. You might in reality
want to group items first, or impose some relationships between the different models. This
is often solved by using techniques like PCA (principal component analysis) to reduce the
dimensionality of the dataset.

The above model is in practice hardly usable since, especially if we are incorporating all
previous ratings, k (the dimensions of the regression problem) becomes very large and
hence we run a high risk of overfitting or we find that we are unable to estimate the model
since n > k where n is the number of observations. This problem is usually solved using
regularization (either ridge / lasso, or Bayesian methods — also discussed in more detail in
Lecture 6).

For a very simple introduction to collaborative filtering with Python see: http://aimotion.
blogspot.nl/2009/11/collaborative-filtering-implementation.html. Also, for a

4References for further reading will be provided in the final lecture notes at the end of the course.
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simple intro which partly inspired this lecture see http://guidetodatamining.com/guide/
ch2/DataMining-ch2.pdf. Note that the literature on Recommender systems and collab-
orative filtering is huge. Here are some examles: (Ricci et al., 2011; Ochi et al., 2010;
Gretzel and Fesenmaier, 2006; Lam et al., 2008; Sarwar et al., 2001)

3.7

Assignment

For this assignment we will be working with the book crossing dataset provided at http:
//www2.informatik.uni-freiburg.de/~cziegler/BX/. Download the .csv dump, and
open the books-ratings file. Here is what I want you to do:

Find the ten users closest to user “170155” using euclidean distance
Find the ten items with the highest adjusted co-sine similarity to item “0446520802”

Suppose user “219459” would arrive at your website, and would look at book “0446520802”,
which 6 books would you recommend additionally and why?

Delete, randomly, 20% of the ratings and try to predict them. Keep track of your
predication accuracy. Do this in whatever way you think will get you the lowest
error. Get some feel for the uncertainty of your procedure.

Feel free to play around with possible model based approaches. However, note that
in Lecture 6 we will be covering (linear) models in more detail.
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Chapter 4

Lecture 4: Network statistics

On the web we will often find data that can be thought of as a network linking nodes
together with edges. Nodes could for example be webpages, and the edges could be hyper-
links. Or, nodes could be people, and edges could be their friendship on a social network
service like Facebook. In this lecture we will deal with network basics: the formal descrip-
tion of networks, and a number of network statistics that are useful to think about and
describe network structures.

The goals of this lecture are the following:
e You will learn basic graph theory and notation
e You will learn basic network statistics
e You will learn about trails and paths

e You will learn how to use python to compute network statistics

4.1 A basic network: formal description of undirected net-
works

Figure 1 shows a basic network. This network has 4 nodes (the red circles), and a set of
edges (or lines). In the figure, the edges are directed: they have arrow heads and denote
a relationship that might be one-way. Thus, we can have directed or undirected networks.
However, we will first start with the mathematical formalism, and some statistics regarding
undirected networks or graphs, 9.

A graph ¢ consists of two sets:
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Figure 4.1: A basic network containing 4 nodes.

e A set of nodes, A = {ni,ng,...,ng}
o A set of lines, & = {ly,l2,...,11}

and thus there are g nodes and L lines that jointly describe the full graph. Each line
is an unordered pair of nodes, I = (n;,n;) and since its bidirectional Iy = (n;,n;) =
(nj,n;). Usually we exclude (n;,n;), called a loop, from the set of lines. A graph without
loops and only single, bidirectional relations is called a simple graph. In full notation we
denote the simple graph ¥ (.4, .¢). Graphs containing a single node are called trivial, and
maps without any lines are called empty. A simple graph can obviously be represented
graphically using nodes and undirected edges. Nodes n; and n; are called adjacent when
I, = (ni,nj) c .

4.1.1 Subgraphs, Dyads, Triads

A graph ¥ is a subgraph of 4 if s C % and A5 C 4. We can generate subgraphs both
by selecting a number of nodes first, and then selection all lines associated to the nodes,
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or selecting a number of lines and then selecting all relating nodes. Note that often when
we do experiments on social networks (more on this later), we use node selection in our
sampling and thus have access to only a subgraph of the full network.

A dyad is a (node-generated) subgraph consisting of a pair of nodes. A triad is a subgraph
with three nodes. Note that sociologist have been really serious about the analysis of
“possible” triads in social networks (we will talk briefly in the lecture about strong and
weak ties).

4.1.2 Degree and Density of graphs

Once we have specified a network (or graph), it is of interest to compute summary statistics
of the network. We will define a few of these in this and subsequent sections. First, we
will focus on undirected networks.

The (nodal) degree of a node is defined as follows:

d(n;) = # adjacent lines for node n;

The mean nodal degree of a graph ¥ is
d= Zzgzl d(n;) _ %

and its variance is

53 = &=

The density of a graph, denoting the proportion of possible lines present in the graph,
is:

L 2L
glg—1)/2  glg—1)

since the maximum number of lines is (§) = g(g — 1)/2 and quite clearly runs from 0 to

1.

A:

Note that obviously, with a bit of algebra and the notion that the sum of degrees is equal
to 2L, we can show that A = d/(g — 1). Obviously similar measures can be computed for
subgraphs.

33



4.1.3 Walks, Trails, and Paths

A walk W on a network (of graph) is a sequence of connecting nodes and lines, starting
and ending with nodes. For example:

W = n1l2n4lgn2l3n4

or more briefly w = ningnong. Special types of walks are:

e Trail: A walk in which all the lines are distinct (nodes might be included more then
once).

Path: A walk in which all the nodes and all the lines are distinct. Path’s are often
referred to by their length: the number of lines in the path.

Closed walk: A walk that begins and ends at the same node.

Cycle: a closed walk of at leat three nodes in which all lines and nodes (except the
begin-end point) are distinct. A graph that contains no cycle at all is called acyclic.

e Tour: A walk in which each line in the graph is used at least once.

And slightly more obscure we have Eulerian trails (closed trail including every line in the
graph) and Hamiltonian cycles (including every node exactly once).

If there is a path between nodes n; and n;, then the pair is considered reachable. If there
is a path — no matter how long — between every pair of nodes, then the graph is connected.
Thus, in a connected graph all pairs of nodes are reachable.

Note that a number of the statistics presented above are super simple, but can be hard
to compute since they require iterating through the graph multiple times. Developing
computationally efficient methods to compute summary statistics of Graphs is an active
area of research.

4.1.4 Distances and Geodesics

It is often useful to compute some distance measure between two nodes n; and n;. The
shortest path (least number of lines) between two nodes is referred to as the geodesic, and
the geodesic distance d(i,j) is defined as the shortest number of lines between n; and n;.
The distance is undefined if there is no path. Distances quantify how far apart nodes are,
and they are used in centrality measures (see below). The diameter of a graph is the
maximum distance max d(3, j).

Note that, relating to our previous lecture, the distance between two nodes can also be
used to make recommendations for new connections / friends in social networks. Here we
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would be looking for nodes that are not adjacent to n (hence not already connected) but
still close (e.g., with a small geodesic).

4.2 Directed graphs

We have, in the above, discussed undirected graphs: we were assuming the lines to connect
the nodes both ways. However, many relations are directional: Webpage links might go
from one page to another but not back, and you might follow people on Twitter who do
not follow you. This gives the notion of directed graph ¥,;(.4",.%), where .4 is a set
of nodes as before, but £ is a set of arcs, where each arc is an ordered pair of nodes
lp =< nj,nj >#< nj,n; >. Since each arc is an ordered pair of nodes there are g(g — 1)
possible arcs in a graph. Nodes n; and n; are called adjacent when < n;,n; >€ £, however
this time adjacency of n; and n; does not imply adjacency of n; and n;. Graphically we
usually represent arcs as arrows which indicate the direction, and < n;,n; > indicates an
arrow from node 7 to node j. Many of the concepts discussed above are easily extended to
directed graphs, although often we need a few more definitions to make sure we identify
the directions appropriately.

4.2.1 Indegree, Outdegree

We talked about the degree of a node for directed graphs. For undirected graphs we have
the nodal indegree:

dr(n;) = # adjacent lines adjacent to n;
and the outdegree:
do(n;) =# adjacent lines adjacent from n;.
As before we can compute d; and do, the mean in- and outdegree. Since clearly S dr(ng) =

>9_do(n;) = L we note that d = do = L/g.

4.2.2 Directed walks

The idea of a walk, trail, path, etc. also generalise to directed graphs. Here we note the
following;:

e Directed walk: walk over a directed graph in the direction of the arcs.

e Directed trail: Directed walk in which no arc is visited more then once.
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e Directed path: Directed walk in which no arc and no node is visited more then once.

e Semiwalk: A walk on a directed path in which the direction is ignored (and similarly
semitrail and semipath).

Two nodes are set to be weakly connected if they are connected by a semipath, unilaterally
connected if they are joined by a path (whichever direction), strongly connected if they are
joined by a path back and forth, and recursively connected if they are strongly connected
and both paths use the exact same nodes but in reverse order. Take some time to parse
the previous sentence.

4.3 Matrix notation for graphs

Above we have covered some properties of graphs or networks. These are really just a basis,
many more properties of graphs are known and studied. Please see (Wasserman, 1994) for
more information (and actually below we will discuss a few more measures of graphs). But,
before we go on we will discuss a different representation of graphs using matrices, and we
will dig into the use of this matrix notation when trying to compute (e.g.,) distances.

Let’s start with what is often called the or sociomatrix:

- 0 0 1 1
0 — 1 0 0
X = 1 0 — 1 0
0o 01 — 1
0o 1 1 1 —

and please note that I will quickly drop the boldface on X and replace it by X if it needs
no disambiguation. The sociomatrix denotes all the arcs between the the nodes. Hence
the sociomatrix is a g X g matrix, in which each entry (either 0 and 1 for the graphs we
have been considering thus far) in the (4, 7)th cell (row ¢, column j) denotes an arc from
n; and n;. A sociomatrix denotes al the notes and lines of graph ¥.

Note that another way to denote the information of a graph is what is called an incidence
matrix I, which is a g x L matrix with nodes on the rows and lines on the columns (thus
each column has two non-zero entries). I do not really think that an incidence matrix is
a convenient way to describe graphs, although for some specific statistics the incidence
matrix provides an efficient way of storing the data.
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4.3.1 Matrix operations

Once we describe a graph or network using a sociomatrix X, we can do all kinds of cool
stuff using standard matrix operations (which, clearly, you should already be familiar with).
But lets note a few things:

e Transpose: The matrix X7© (or X’ or X' or ...depending on who you are talking to)
is the transpose of matrix X where each xz; = xj;. That basically means “flipping”

the matrix around its diagonal. Clearly, for an undirected graph X = X7T.

e Addition / subtraction: The addition of two matrices (with the same dimensions) is
defined as Z = X +Y where z;; = x;; + y;;. Similarly for matrix subtraction.

e Multiplication: The operation Z = XY is defined as z;; = Zle zy;- Note that
X is of dimension g x h and Y of dimension h x k (the inner ones match up), and
the result Z is of dimension g X k. You should know this.

e Powers: X? = X X. Done, and similarly for higher powers.

e Boolean multiplication: This is matrix multiplication (see above), but now Z =
X ®Y and defined as

o 1 ifozl Tay; >0
1) T .
/ 0 leéczl xilylj =0

Network properties using matrix operations

Using the sociomatrix it is relatively easy to compute walks and reachability. Note that an
entry z;; = 1 in X indicates that there is a walk of length one between node n; and n; in
a graph. Any non-zero entry in X? denotes the number of walks of length p between n;
and n;. Hence, taking the powers of the sociomatrix tells you how long walks are between
two nodes. We can also define X~ = X' + X2 + ... + X9~ ! where any non-zero entry in
X indicates the nj is reachable from n; in g — 1 steps (which is obviously the maximum
number of steps).

Matrix operations on the sociomatrix also help computing distances d(i,j). Basically the
first non-zero entry of X? when increasing powers p = 1,...,p = g — 1 gives the distance
between two nodes. Formally d(i,j) = minp:cfj > 0.

Finally, we can easily use compute the degree of (a node of) a directed graph:
g g
d(ni) =) wij =y @ij =i = 254
j=1 i=1
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and similarly for directed graphs: do(n;) = z;4+ and dj(n;) = x4;.

Finally, we can compute the density of a graph:

9 9
_ 2ui=1 > 1 i

A=
g(g—1)/2
4.4 Centrality and prestige

A recurring theme in the social network literature is the computation of actor centrality.
Here, we try to identify actors that are prominent and extensively involved with other
actors. Actors (or nodes) are considered prominent if the ties of the actor make her partic-
ularly visible to the others. In a directional graph, actor prestige (or status) extends the
definition of centrality to incoming ties, focussing on the actor as a recipient of ties.

Lets denote C'4(n;) as a general centrality measure for actor n; (below you will find specific
examples). And, further define Cy(n*) as the largest value of a particular centrality mea-
sure in the network. Freeman (see, e.g., Wasserman, 1994) defines as a group level centrality
measure (thus a summary statistic for a graph), the general centralization index:

i=1 (Ca(n®) = Ca(ni))

CA= xS, (Ca(n) — Ca(my)

Clearly 0 < Cy < 1.

4.4.1 Specific types of centrality

An obvious centrality index is the degree of an actor Cp(n;) = d(n;) that we covered earlier.
However, since d(n;) depends on g, this is often standardized: Cp(n;) = d(n;)/(g — 1).
Cp(n;) can be uses as a centrality measure to compute a general centralization index. We
can use the same idea but now using dr(n;) to compute a measure of prestige.

Closeness centrality provides another measure of centrality and is defined as Ce(n;) =
[ ?:1 d(ni,n;)]~t where d(e, e) is a distance function between two nodes.

Another measure of prestige is called rank prestige and is defined by 7 = X'p where
the entries of p contain the rank prestige for each node. You might recognise this as an
Eigenvector equation. While this looks simple the idea is pretty refined, and the calculation
is not always trivial (for example the above specification assumes X T to have an Eigenvalue
of one, which might not always be true). We will talk about rank prestige more in the next
lecture.
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4.5 Further remarks on networks and graphs

In this lecture we really only scratched the surface of what is known about graphs, networks,
and how to analyze them. However, knowing some of the most basic jargon and operations
is useful, since these are often encountered when describing things that are happening on
the web. I just want to mention two things that I left out in the above, but that I think
you should be aware of:

e Homophily: “Similarity breeds connection. This principlethe homophily principlestruc-
tures network ties of every type, including marriage, friendship, work, advice, sup-
port, information transfer, exchange, comembership, and other types of relationship.
The result is that people’s personal networks are homogeneous with regard to many
sociodemographic, behavioral, and intrapersonal characteristics. Homophily limits
people’s social worlds in a way that has powerful implications for the information
they receive, the attitudes they form, and the interactions they experience.” For
more see (Aral et al., 2009). . There is a lot of research on homophily, its strength,
and its consequences on the web.

e Network experiments: Now that social networks like Facebook and Twitter and the
like clearly give us an overview of the links between people, there is a recent uproar
of academic work interested in the estimation of effects of treatments when these
are delivered to people that are connected in one way or another (Aral et al., 2011;
Bakshy et al., 2012) . It really is non-trivial how one should conduct classical (psy-
chology) experiments in networks. You will experiment with this a bit in this weeks
assignment, but make sure to read up on the literature on the topic if you ever find
yourself doing an experiment in a network (which is some ways you always are when
you are doing an experiment).

4.6 Assignment

For this assignment you will actually be generating your own dataset (since that is good
exercise t00).

e Write a function to generate a sociomatrix of size g X g with a density A that is set
by the user.

e Write a function to generate a sociomatrix for a directed graph of size g x g which
you populate with random ties (each possible arc is a draw from a Bernoulli(p)).

e Plot your graph for g = 20.
e Plot your graph for g = 103.
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Create a function which generates a dataset containing a value z; ~ N (10,4) for each
nodeifori=1,...,i=g.

Generate the sociomatrix and values (using your above functions) for g = 103

Randomly sample 200 nodes and simulate an experiment in which n = 100 nodes
(randomly selected from the sample of 200) are “treated” which results in z; :=
x; + 10 4 € where € ~ N (0,2). Estimate the effect of the treatment.

Now repeat the experiment, but this time assume that there is a network effect:
after the effect of the treatment itself, the nodes affect each other using the following
formula x; = ax;+ (1 —a)(z;) where Z; denotes the mean value of the nodes adjacent
to .

Experiment with settings for a, the density A, and different sample sizes. How does
the “network” effect influence the estimates of the treatment effect?

Develop different specifications of the network effect.
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Chapter 5

Lecture 5: Markov Chains and
Pagerank

In this lecture we will continue our discussion of the Web as a network, and will explore
one of the most well-known uses of this property: the use of the network structure in
Google’s Pagerank (in their original version that is — nowadays their algorithm is a bit
more complex). However, before we work out Pagerank we have to make a small digression
into Markov Chains (you will see why once we get there).

The goals of this lecture are the following:
e You will learn some basics regarding Markov Chains.
e You will understand stationary distributions of Markov Chains

e You will understand the link between the network socio-matrix and transition ma-
trixes.

e You will be able to implement a basic version of Google Pagerank in Python.

5.1 Markov Chain Theory

Let Xo, X1, Xo,... be a sequence of random variables, for example the (discrete and finite)
possible states of a system at discrete timepoints n. The sequence has the Markov property
if:

P(Xn—l—l - ]’Xn - inn—l - Z.n—lv o 7X0 = ZO)
= P(Xpp1 = j|Xn = i)
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Figure 5.1: Example of a homogeneous Markov Chain with the associated transition prob-
abilities

Basically, if a system has the Markov property then the past and future are conditionally
independent given the present. Such a stochastic system is called a Markov chain and is
used in many places. You should familiarize yourself a bit with Markov theory since it has
many useful applications.

If P(X,4+1 = j|X, = i) does not depend on time (hence if the probability of reaching a
specific state in the future given the current state in the present do not change over time)
then we have a homogeneous Markov chain and we can denote the transition probability
as:

qij ‘= P(Xn-i-l = J’Xn = Z)

Obviously we can stack all the ¢;;’s into a Matrix ¢ which is called the transition ma-
trix.

Consider the Markov chain displayed in Figure 5.1. The transition matrix is:

Q

I
NI—= O DWW
S O Owh
Bl -0 O

Bl= Ol O

Note that the rows sum to 1.

Suppose that at time n, X,, has distribution s (a row vector denoting the PMF), then
P(Xnp1=j) = ZP(Xn+1 = J|Xn =) P(Xy =)
i
= Z qijSi
i
= SQ
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so sQ is the distribution of X, ;1. More generally, s@ is the distribution of Xp+j which
also implies:

P(Xnim = j1Xn =1) = (Q™)i

5.1.1 Stationary distributions

Let s be some probability vector for a Markov chain with transition matrix Q). We say
that s is stationary if:

sQ =s

Note again here the similarity of an Eigenvector equation (the transpose this time) as briefly
referred to in the previous lecture when discussing rank prestige. The stationary distribu-
tion can be thought of as the long-run probability that, if you consider the Markov chain
as a directed graph with weights on the edges, that you end up at a specific node.

5.1.2 Irreducible Markov chains and stationary distributions

The stationary distribution s is clearly of interest as a summary of the stochastic process
(or as a measure of rank prestige. Note that then the sociomatrix needs to be normalised
such that the rows sum to 1). However, one could wonder if s actually exists, if it is unique,
and if the chain “converges” to s. Obviously, its also kind of interesting to see how we
could compute s.

Much is known about Markov Chains that we will not cover in this course, but one theorem
is important for our current purposes:

Theorem 1 For any irreducible Markov chain:
1. A stationary distribution s exists
2. s is unique
3. 8 = T%,, where r; is the average time to return to state i starting from state i.

4. if Q™ is strictly positive for some m, then given any stating state t

lim tQ" =s (5.1)

n—-+0o0
Which obviously begs the question: when is a Markov chain irreducible? Well, that is the

case if it is possible (with probability larger then 0) to transit from any one state to any
of the other states in a finite number of transitions. Note that this means that all states
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are recurrent: there is a probability of 1 of recurring to that state after a finite number of
transitions. This means that in the figure below 5.2(b) and 5.2(d) are reducible, the other
two are not.

(a) Disconnected Markov chain (b) Not so special Markov chain
) Markov chain with absorbing states ) Periodic Markov chain

Figure 5.2: Some Markov chain examples

5.2 Google Page Rank

I am sorry if that was too long a ramp up (both networks and Markov chains) to discuss one
of “the” algorithms used on the web: Pagerank. Pagerank (Page et al., 1999) was designed
as a solution to answer the question: which pages on the internet are more important then
others? (or, given a search term, if I get all the pages with that term in them, how do I
order the pages?).

The question of identifying “important” pages should make you think of identifying “im-
portant” nodes in a network. However initially this is not the way the task was carried
out: companies tried human raters to rank the importance of pages, and other compa-
nies counted the number of time a search word occurred to estimate importance. Those
methods did not really work: the were hard to scale or easy to cheat.

Alta Vista was one of the first companies to recognize the importance of the netwerk
structure of the web: webpages can be considered nodes, and links can be considered
edges. So, we could use degree (or some standardized version of in-degree) as a measure
of importance. However, that is also easy to cheat (just create a lot of fake webpages
that link to a page). So, people started looking for a definition of importance which was
based on the network structure of the web, but incorporated not only the degree, but also
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the importance of the nodes linking to a node. That sounds circular, but its exactly what
Pagerank does...

Suppose we look at a very small portion of the web (only 4 pages — but the idea remains
the same if we scale it) with the following sociomatrix describing the links:

O O = O
o O O
S O = =
o~ OO

we could then normalise this matrix to get to a transition matrix and treat this snippet of
the web as a Markov chain:

Q' - (5.2)

S OO
S O ON=
O O WIFNI-
O = O O

We can then define the importance of a page by looking the stationary distribution s of the
Markov chain with transition matrix ) where higher entries in s denote a higher “long-run”
probability of ending up at that page and thus a more important page!

That was the key insight: Pagerank is based on the stationary distribution of the web.
5.2.1 Practical issues
If you pay close attention you see that the transition matrix in Equation 5.2 is not valid.

The row sums are not equal to 1. This is because page 4 has no outgoing links, so there is
no probability of leaving the page in the current specification.

The solution used in pagerank is the following:

(5.3)

Q

I
3= oo
3~ o o=
S‘HOI\J\HM\H
3R o o

where m is the number of pages: 4 in this example.

So that solves one problem, however now we are faced with the next problem: if we want to
compute sQ) = s, then we need to know that a stationary distribution even exists. One way
of solving it is making sure that the chain described by transition matrix @ is irreducible.
This was solved in pagerank using the following:
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G:aQJr(l—a)%

where G is the guaranteed irreducible transition matrix, J is an m X m matrix with all 1’s,
0 < a <1 is a tuning parameter. This forces a small positive transition probability from
each state to each state. In the original pagerank article the authors choose a = .85.

Now, to get s, or really the pagerank p, we compute pG = p. This however is a system of
linear equations that might be quite large since m might be 10° or even more. With (e.g.,)
Gaussian elimination this might be very cumbersome.

5.2.2 Computational issues

The pagerank p is computed by using Equation 5.1: we take some starting position sg, and
then just iterate for “a long time” (how long is something one could have deep philosophical
debates about).

so, we compute:

p=((503)G) ...

Note that this still is cumbersome, but there are a few things that make it computationally
feasible:

e We can break down the computation in terms soG = asp@ + (1 — oe)%.

e The first term @ is composed largely of 0’s, and computationally fast methods for
these types of sparse matrix multiplications exist.!

e Also sgJ means doing a dot product with a matrix J with all 1’s: basically just
adding all the components of sg. That means the result is a vector of all 1’s.

5.2.3 Example

Here is some example (sorry) [R] code to make all of the above run for a link-matrix of
size M = 10:

set.seed (14)

# Build and normalize sociomatrix:

M <— 10

X <— matrix (rbinom (M«M,1,.3) , nrow=M, byrow=TRUE)

!Note that this is not a computational methods course, so if you need more on this, try another course.
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Q.star <— t(apply(X,1,FUN=function (x){return(x/sum(x))}))
Q <— t(apply (Q.star ,1 ,FUN=function (x){
if (any(is.nan(x))){
return (rep(1/length (x),length(x)))
telse{return(x)}}))

# Google pagerank matrix

alpha <— .85

J <— matrix (1,nrow=M, ncol=M)

G <— alpha x Q + (1—alpha) % J/nrow(Q)

# random start
draws <— runif (M)
p <— draws / sum(draws)

# iterate and store:
N <— 50
store.p <— matrix (NA, ncol=N, nrow=M)
for(i in 1:N){
p <= p{\%+{\%}Q
store.p[,i] <— p

}
# plot
plot (store.p[l,], type="17, ylim=c(0,.5))
for(i in 2:M){
lines (store.p[i,], col=i)
}

And a little plot of how fast this actually converges.

Note that this lecture was partly based on a lecture by Joe Blaskovich given at Berkely
during Statistics 101. These lectures, which I can highly recommend, can be found on
iTunes U: http://itunes.berkeley.edu.

5.3 Assignment

This assignment looks short, but isn’t simple at all:

e Write, using e.g., http://scrapy.org a scraper to scrape all links within a specific
domain. For example http://www.ru.nl/artificialintelligence/.

— Thus, you first aim is to create an array of nodes A = {ny,na,...,ny} and a
list of lines .Z = {l1,12,...,1l5} that describe the /artificialintelligence/ pages

— You should be aware that you can make http requests to get the html document,
that you can parse this document, and that you can navigate the DOM tree.
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Figure 5.3: Convergence of a random starting distribution p over iterations N for the
pagerank algorithm.

— You are obviously looking for <a href=¢‘...%7>...<
a> tags.

— Make sure you are not querying the same page in an infinite loop!

— Time the number of request you make to the page so you don’t get
banned!

e Create the link matrix X, and then the transition matrix Q.

e Compute the pagerank for each of the pages. Make sure to monitor “convergence”
in some way.
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Chapter 6

Lecture 6: Linear and hierarchical
models in Python.

The goals of this lecture are the following:

e You will learn how to fit linear models in Python (and off course you will learn some
theory behind them)

You will learn how to fit generalized linear models in Python

We will discuss shrinkage models (no-pooling, pooling, partial pooling)

You will learn about Stein estimation

You will learn how to fit hierarchical linear models in Python

Note that this lecture, and these lecture notes, focus primarily on the (mathematical)
ideas behind these types of models. They are included in the course since they have a large
number of applications for web data. Fitting the models and finding your ways through
Python is left up to you during the assignments.

If you want to know more about these topics I can strongly recommend the following books:
(Gelman and Hill, 2006; Hastie et al., 2013).

6.1 Linear regression

Ok, this section is, I hope, all well known to all of you, but it never hurts to revisit.
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A (very) simple linear regression model is given by

yi = Po+ bz + €
where
e y; is the response of “person” i.
e 1; is the predictor
e [ is the unknown intercept of the line

e (31 is the unknown slope of the line
2

e ¢; ~ N(0,0?) is the noise with unknown variance o

This implies a few things, namely, y; is a random quantity due to ¢; only, E(y) = 5o + f1z,
V(y) = 02, and thus, y; ~ N(Bo + frzi,0?).

One way to find the “best” fitting line through a set of points — because remind you, that
is kind of what we are after here — is called Least Squares. It minimizes:

n

min Y (y; —bo + blxi)Q

bo.b
001

Since this is a minimization problem, taking the derivatives with respect to by and by
and setting them equal to zero will result in two equations which are called the normal
equations:

nbo + (Z xi)bl =0
O _zibo+ (Q_ad)br =) wiy;

Or, solving for the parameters of interest:
> (i —2)(yi — )
> (@i — 1)

bo =Fo =7 — bi7.

by = =

Notice that there is nothing probabilistic about least squares estimation. It’s merely an
optimization problem where the sum of squared vertical distances from actual points to
a line is minimized. There is no underlying distribution assumption. In fact, nothing is
treated as random. We just have a cloud of points and we pass a line through them.

However, we said y; ~ N(Bo + f12i,02), and thus assuming that the responses are dis-
tributed normally with mean By + B1; and variance o we can also compute a likelihood
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over the unknown model parameters fp, $1 and o2. Maximizing this likelihood will yield
the Maximum Likelihood Estimates (MLE).

The density functions for y; are

_ 1 (yi — Bo + Biwi)?
fly) = o e [,

The loglikelihood is
1 o 5
L(Bo, B1) = const — 552 ZEI (yi — Bo + Brxi)”.

We then maximize the loglikelihood, which in this case is equivalent to minimizing the sum
of the residuals:

1 n
257 > (i — Bo+ Prmi)’.
i=1

Hence MLE is LSE in linear regression. This is a nice link between purely distance based
methods and probabilistic methods. It turns out that under the assumptions we made
earlier, the maximum likelihood estimators for 5y and S; are identical to the least squares
estimators.

The maximum likelihood estimator for the error variance o2

52— >y (yi — bo + biwy)?
n

is easily obtained as

Note that this is a biased estimator for o2.! To correct for the bias we can subtract the
number of parameters estimated prior to the estimation of ¢ from n. Thus, the unbiased
estimator is obtained as

o Doiei (i — bo + bizi)?

n—2

S

for the 2 parameter case.

Finally, for inferential purposes, it can be shown that b; = 31 is normally distributed with
2
mean E(b;) = 41 and variance V(b;) = -Z— where S, = >_(z; — Z)2. Thus the quantity

S.’IXE
z= gb/l\;s’fi would be standard normally distributed. Since we don’t know o2, if we replace

it by its estimator s?:

=B
N S/ Sux

'Here “bias” means that the expected value of the estimator for o2 is not equal to the true value.

t
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has a t distribution with n — 2 df.

So, that was the simple case. All of this obviously translates to more predictors: z;. We
can thus now denote:

Y = Bo+ frx1 + Bz + ... + Brxy + €

where

e y is the response

® Ii,x0,X3,..., 2 are the predictors

e 5o, 51, Bo, ..., B, are unknown regression coefficients
2

e ¢ ~ N(0,0?) is the noise with unknown variance o

When we have n observations from such a model, i.e. y = (y1,¥y2, ..., yn)’, with we define
X as the design matrix

1 711 ®12 -+ T

1 mor @wog -+ @y
X_ =

1 rp1 Tp2 - Tnp

The least squares (or MLE) solution 8= (Bo, B1, B2, -, Br)’ is given by

B=(X'X)"'Xy.

6.1.1 Note on Ridge regression, Lasso, etc.

Estimation of ﬁ as described above for linear regression works and is super simple (in closed
form). It can actually be done in summation form in data streams (we will talk about this
more in later lectures).

However, when k& > n, where n is the total number of individuals, this will fail (why?).
There are several solutions to the problem. One is to not minimize ming, p, . (y; — bo +
biz;)? (for the simple regression case), but rather something like:

min ((Z(yz — by + b1z;)?) + f(bo, bl))

bo,b
0,01 i—1
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where f(bg, b1) denotes some function of the b’s, which (usually) imposes a penalty for high
values of b. Ridge regression, the Lasso, etc. are all variations of this basic idea. Note that
also the multi-level models that we cover below can be thought of as a penalty on a batch
of parameters (more on this later).

A Bayesian approach

Another solution to k > n is to take a Bayesian approach by placing a prior on 3 which
somewhat restricts the solution but will help at least make it tractable. The prior we can?
use on (3 is

m(B) o exp(—78'B).

We now write down the posterior with respect to 3

(y —XB)'(y — XB)

202

Post(83) o exp <— ) x exp(—73'8).

We now, to obtain our MAP estimate, compute the log-likelihood and maximize

(y —XB)'(y — XB)

202

max [—
B

- TﬁIIB:| 9
or

min (v —XB) (y — XB) + 20°768'3] .

Please note the similarity between the resulting estimator and the Ridge / Lasso specifi-
cation.

Finally, we can take the derivatives to solve this stuff:

0 = 4 [y~ XB)(y - XB) + 20*78'5]
= —2X'(y — XB) + 270°8

= X'(XB-y)+ 3.
and with some not too fancy matrix manipulations we get:
X'y = X'XB+ )3
Xy = (XX+A)3
(X'X 4+ M) X'y = (X'X4+ M) YX'X +AI)3

(XX + )Xy = B

Note that X’X + A is invertible when )\ > 0 and hence solves the issue.

2Since this provides us with a relatively simple solution
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6.2 Link functions and Generalized Linear Models

Above, we where assuming continuous (and Normal) y. We might not always encounter
these. However, note that what we were doing was F(y;|x;) = Bo + [1xi, we were finding
the expected value of y given . What do we do if y € {0,1}7 Well, then we could state
E(y;) = Pr(y; = 1) = m; and the linear regression thus would become:

7 = Bo + B1X; (6.1)

with the full model for y being

yi = mi+ € = Bo+ b1 X; + ¢ (6.2)

and this is called the linear probability model. But that is a stupid idea because:

1.

The residuals are supposed to be ~ N. However, with a binary response variable the
residual y — 8o + 51X; can only take a limited number of values.

. The variance of e, o2 should be constant (homoskedasticity). However, var(y;) =

mi(1=m;) = (Bo+51Xi)(1—Bo+51X;) which depends on z; and is thus heteroskedastic.

The model would easily predict values for y; that are outside of its range (0, 1) and
thus would produce insensible results.

So, we are stuck when we do not have continuous data. Well, not really. We could use a so
called Link® function, which “links” the linear predictor X3 to E(y). A few examples:

o The logit link:

- 1
The logit link is used to model dichotomous data. I guess you are familiar with this
model. Note that it cannot be fit in closed form, and thus requires some sort of
iterative method. We will cover methods to fit logistic regression later on, for now

please just rely on the existing implementations in Python.
The probit link:
Pr(y; = 1|1X;) = ©(Xip), (6.4)

here ® is the CDF (cumulative density function) of the normal distribution. This
model is also used for dichotomous data and is also called probit regression. Often the
results of probit and logit regression are very similar (since they only differ slightly in
the tails). Probit links are used more in economics and are often easier for Bayesian
analysis.

3That’s the jargon used in statistics, in computer science they call the inverse of the link function the
activation function.
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e The poisson link:
E(yi| Xi) = exp(XiB). (6.5)

This distribution has support over the interval [0, co) and is often used to model count
data. E.g. how many visitors does a website attract within a given time period? Or
how many cars run over different types of roads within a set timeframe. The data is
assumed to be distributed Poisson.

e The cumulative logit link: (this one is a bit tricky to get your head around)

Pr(y; > 11X;) = logit *(X;p) (6.6)
Pr(y; > 2|1X;) = logit (X, — c2) (6.7)
Pr(y; > 3|1X;) = logit " (X8 — c3) (6.8)

. (6.9)

Pr(y; > K —1|X;) = logit ' (X;8 — cx_1). (6.10)

This is used for ordered categorical data. Basically the linear predictor predicts a
number between —oo and +o00. Next, a number of “cut offs” are determined (recall
the latent variable specification we talked about earlier for logistic regression). The
value of y; is predicted by comparing the different cut-offs c¢i,...,cx_1.

Do note that other link functions (such as the Gamma) exist and might be useful for
different types of observed data. Also note that for the “standard” regression model the
link function is E(y;|X;) = p = X;p.

So, you are now well on par with linear models and generalized linear models.

6.3 Hierarchical (or mixed) models — LMMs and GLMMs

In reality, data is often not so simple. Especially web data often comes with a structure that
is not easily dealt with using (generalized) linear models: Web data often comes in multiple
levels or hierarchies, with some dependency structure between observations. For example,
we might have the click behavior of individuals on a newsfeed article, y € {0,1}, which
might depend on the number of friends who “liked” the article, z € {0,...}. However,
we can observe multiple interactions of the same person with newsfeed articles. Hence we
get a data structure like: in which I am (not very realistically, but it serves an illustrative
purpose) ignoring which newsfeed article people were actually looking at.

Now the question is, how do I deal with the “userid” in my analysis? Omne thing I can
do (called pooling) would be to just ignore it. I fit Pr(y; = 1|X;) = logit ' (X;3) =
1+e+xiﬁ’ and use that to generate (e.g.,) predictions as to whether or not a newsfeed with
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a certain number of likes will be clicked on (and hence should be selected to get more
advertising money). But note that I am ignoring differences between people, and it could
be that some user who showed up a lot but has awkward clicking behavior totally ruins
my predictions.

I could also do something like this:
Pr(y; = 1|1X;) = logit™" (Xf;1;) (6.11)

Where I am using 3;); as a notation that each individual j has his or her own B . Basically
this would mean doing separate regressions for each user. However, here I have the prob-
lem that at the level of a user, I might not have enough data to actually obtain proper
estimates.

Thus, we would like some “intermediate” form. And one way to do this is to fit a multilevel
(or hierarchical, or random effects) model. The basic idea here is to assume some distri-
bution over the 3;’s: that allows us to both use the information from the other people,
but also model the people separately. These models are denoted in several (equivalent)
ways:

1. First, we can write our models by emphasising that we allow the coefficients in a
linear regression to vary by groups. For a “random intercept” model this leads to the
following specification (in Matrix notation):

yi = oy + X + e (6.12)

Here, X would include a row of 1’s for the intercept, and the value of the intercept
varies by group of observations j. The second level model is simply a; ~ N (piq, o2).
We could also write this second level model as o = piq + 15, with n; ~ N(0, o2).

2. We could also explicitly link the local regressions within each group. So with in a
group j:

yi ~ N(aj + Bai, o), (6.13)
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for © = 1,...,n;. Next, at the second level of the model we include group level
predictors:

a; ~ N(v0 +71p5,02). (6.14)

3. We can also model the whole thing as a single regression:
yi ~ N(Xi, 05), (6.15)

where we explicitly encode in X vectors corresponding to the intercepts, the group
level predictors, and indicators of each group. Next, we specify 3; ~ N (0,02) for
each of the j groups. Why do we set the mean of the random term to 0 in this case?.

4. Finally, we can write the model as a model with correlated errors. Here

yi ~ N(X;8, e, (6.16)

and € ~ N(0,%). Here X is again a matrix with predictors, but the erros e

have a covariance matrix Sigma. The error matrix is the same as the sum of the
two errors at the two levels of the model in earlier specifications. Here the matrix
> is structured as such that one of the terms is the same for each unit within a
group. This last specification is not immediately obvious, and we will not discuss it
too deeply: it is more informative to specify the multilevel structure explicitly than
to hide it in a (complicated) error matrix. However, its good to know that this is
possible (and that it is the most shorthand notation for the model).

Note that ridge regression (or Bayes regression) actually does something similar: it “ties to-
gether” the parameters 5. The only difference here is that we have “batches” of parameters
that are tied together (the 3;’s) which are called random effects, and we have parameters
that do not depend on each other: the so-called fixed effects. Obviously, random effects
models can make use of link functions for different types of dependent outcomes y.

Stein, in 1965, proved that taking the grouped structure into account during estimation
improves predictions in terms of average squared prediction error. This is due to the fact
that the individual average — with multiple observations for individuals — as a predictor
of someones true “ability” (or whichever trait that is measured) produces more prediction
error variance than an estimator which takes the grouped structure of the data into ac-
count. This process of taking the group structure into account is commonly referred to as
shrinkage. Shrinkage is a weighing between the individual average and the overall average.
Because we make use of binary data, we refer to these proportions as p; for the individual
average and p for the average over all individuals. The extent to which the estimate of
individual level effect is shrunk towards the overall average, p, is determined by the shrink
factor,b:

ﬁj:bﬁ—l-(l—b)ﬁj j=1,...,N, (6.17)
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where p; is the estimated individual level effect for person j and N is equal to the total
number of individuals. When b is equal to 1 (fully shrunk), the individual level effect is equal
to the overall average, p; = p, while the individual level effect is equal to the individual
average, p; = pj, in the case that b = 0 (not shrunk). Different model specifications (or
priors) on the distribution of the §;’s translate — when trying to predict values — to different
shrink factors.

Figure 6.1 presents the general effect of shrinkage in a simple case when there are no
features x: the individual averages are shrunk towards the overall average. Individual
averages that are close to the overall average are hardly shrunk while the more extreme
individual averages are shrunk more towards the overall average. While this introduces
bias, it reduces the error variances.

observed individual averages

> »—
' "

estimated individual level effect
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.1: An illustration of shrinkage: At the top of the graph are the observed individual
averages p; and at the bottom of the graph are the estimated individual level effects p;
which are influenced by the other individuals. Fach dashed line connects the observed
individual average with the estimated individual level effect. The solid line in the middle
of the graph indicates the overall average, p.

6.3.1 A note on estimation

Hierarchical models are difficult to fit, since the likelihood contains “latent” (missing)
variables (at the higher levels of the hierarchy we actually do not observer the variables
directly). We will not go into detail into how hierarchal models are fit (e.g. how we compute
the (’s and the variance terms), but here are some remarks about it:
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Multilevel models are more demanding to estimate than standard linear
models (or generalized linear models). In the case of the Gaussian-Gaussian
multilevel model such as the one-way random effects model, we can integrate out
all levels of the hierarchy and are left with a likelihood for y which only depends
on the fixed effects and the induced covariance structure. Maximum likelihood
estimates for the coefficients on the fixed effects as well as the parameters of the
variance components can be computed. However, with the maximum likelihood
estimation of the standard linear model, the estimates of the parameters of
the variance component are biased. This has led to the use of REstricted
Maximum Likelihood (REML) methods for estimating variance components
from a standard likelihood point of view.

At the heart of the REML method is a partition of the likelihood function
into two pieces, one which is free of the fixed effects and one which depends on
the fixed effects. The variance components are then estimated by maximizing
the piece of the likelihood which only depends on the variance components and
not the fixed effects. In the Gaussian-Gaussian setting, this step is achieved
through an appropriate linear transformation of the data. The estimate of the
variance component is then used when finding estimates of the fixed effects.
This second step is equivalent to maximizing the entire likelihood conditioned
upon the assumption that the variance component is equal to the one estimated
using the restricted likelihood.

Even using the REML approach, computation can be burdensome and time-
consuming and so the EM algorithm of Dempster, Laird, and Rubin is often
employed when computing estimates. While REML uses a restricted likelihood,
the EM algorithm expands the data into a complete data vector by appending
some parameters (usually location parameters) to the end of the data vector.
This expanded data vector now depends only on the remaining parameters
(those of the variance component) and one iterates the Expectation and Maxi-
mization steps. In the M step, an MLE (REMLE) for the variance components
is found conditioned on the current value of the fixed effects. In the E step, the
expected values of the sufficient statistics for the fixed effects is found condi-
tioned on the current value of the variance components.

Beyond these methods for computing ML and REML estimates, the Bayes
paradigm offers powerful Markov chain Monte Carlo (MCMC) simulation tools
for computing posterior statistics of interest. It has been shown that an em-
pirical Bayes approach provides estimators that are equivalent to those from
the REML method. In the Gaussian-Gaussian multilevel model, the hierarchi-
cal specifications and conjugate prior (a mathematically convenient form) for
the parameters lead to a Gibbs sampler for the parameters of the model. In
Gibbs sampling, the full conditional distributions of the parameters are sam-
pled iteratively, producing a Markov chain that eventually converges such that
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these conditional draws behave as if they are draws from the marginal posterior
distributions for the parameters. When model prior specifications do not lend
themselves well to Gibbs sampling, the Metropolis-Hastings algorithm (an it-
erative modification of rejection sampling) is utilized to produce samples from
the appropriate posterior distribution. One possible complication in the uti-
lization of the MCMC techniques is the dimensionality of the random effects.
This has become a well-studied problem and there are a wide range of tools for
addressing this problem.

In this course we will use “of the shelf” methods for fitting these types of models. However,
do you should definitly understand how linear models (and generalized linear models) are
estimated, and you should be able to look up — if need be — how the EM algorithm or the
MCMC methods referred to above actually work.

You will find that for “web data” — very informally referring to very large datasets — EM
and MCMC methods for multi level models are quite slow. Thus, it is an active area of
research to work out how we can compute these things fast, how we can distribute the
computation, etc.

6.4 Assignment

For this assignment we will examine a dataset provided by (Gelman and Hill, 2006) in
Chapter 14. You can find a description of the datafile at:

http://www.stat.columbia.edu/ gelman/arm/examples/election88
The dataset is called “polls.subset.dat”.
Please finish the following assignments:

e Let’s first fit a very simple logistic model to predict voting based on people’s age,
ignoring the grouping factor state. What do you see?

— You can use scikit-learn for Python to fit these types of models.

— To get started, please run through the tutorial here:
http://nbviewer.ipython.org/github/justmarkham/gadsdcl/blob/master/
logistic_assignment/kevin_logistic_sklearn.ipynb

e We now want to turn to fitting random slopes for this model (e.g., fitting a hierarchical
model). But, we run into a problem: Python has libraries available for fitting LMMs
(Linear Mixed Models), but not GLMMs. However, we will go ahead anyway:

— Install [R].
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— Get a hang of [R] for fitting GLMMSs by following http://www.ats.ucla.edu/
stat/r/dae/melogit.htm

— Intall http://rpy.sourceforge.net

— Try some simple example of using [R]| code from python. For example try x <-
rnorm(10,0,1) and return x to obtain random 10 random draws from a Normal
distribution using [R] instead of Python.

e Now that we can use [R], we can use lme4 to fit GLMM’s! So, return to the
“polls.subset.dat” dataset.

e Now let’s examine variability between states. Fit a model with random intercepts
per state, and nothing more (no fixed effects). Inspect the model and the estimated
variance of the random effect. Is it large?

— The Ime4 comment would look like this: lmer(bush 1 + (1 | state), data=poll,
family=binomial (1ink="logit")).

o I guess that is where we will stop, since this is already a lot. However, you should
know sickout-learn as a package to fit statistical models (and do a lot of nice Machine
Learning stuff, and you should be aware of the opportunity to interface with other
languages from python (for example [R]), which discloses all kinds of cool options.
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Chapter 7

Lecture 7: SQL and No-SQL
databases

After covering some basic methods and tools (networks, generalized linear models), and
some of the web’s historical AT / Machine learning algorithms (Naive Bayes, Recommender
Systems, Pagerank), we are now turning to some more practical issues. Why? Because of
you claim you know something about AI / data on the web, you need to not only learn a
programming language that you can use for AI / data heavy applications on the web (which
you have been doing all along, its called python), but you better also know practically how
to deal with data.

Note that most of this lecture (and lecture 8) covers web tutorials on practical issues. I
the lectures I will discuss the basic idea’s behind the concepts covered. However, in the
tutorials you should gain hands on experience: experience that you will need to complete
the practicals. Some of you might have encountered these topics already, so my apologies
if its boring. On the other hand, these things are really vital to make stuff work on the
web.

The goals of this lecture are the following:
e You will learn about relational databases, the basic structure and basic queries.
e You will learn how to interface with MySQL using python.
e You will learn about non relational database structures, and their pro’s and con’s.

e You will learn how to use Python to interface with a Mongo (NoSQL) database.
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7.1 Relational Database: An introduction

Beforehand: If you would like to learn more about relational databases, a good textbook
is Database Management Systems, Third Edition, by Ramakrishnan and Gehrke.

A relational database is collection of tables (also called relations). A table is a collection
of rows (also called tuples or records).

Each row in a table contains a set of columns (also called fields or attributes). Each column
has a type:

e String: VARCHAR(20)

e Integer: INTEGER

e Floating-point: FLOAT, DOUBLE

e Date/time DATE, TIME, DATETIME
e Several others...

An important concept in a relational database is the primary key: this key provides a
unique identifier for each row (need not be present, but almost always is in practice). Note
that in relational databases rows are of a fixed size.

A schema contains the structure of the database, including for each table:
e The table name
e The names and types of its columns
e Various optional additional information (constraints, etc.)

SQL is a language for creating and manipulating relational databases. It was nitially cre-
ated at IBM as part of System-R and is now implemented with modifications in numerous
products: Oracle, Sybase, DB-2, SQL Server, MySQL, SQLite, etc. not all of these are
completely compatible.

Lets look at some examples of the use of SQL to create databases: Let’s create a table for
student administration:

CREATE TABLE students (
id INT AUTOINCREMENT,
name VARCHAR(30) ,
birth DATE,
gpa FLOAT,
grad INT,
PRIMARY KEY(id));

63



and, let’s add rows to the students table:

INSERT INTO students(name, birth, gpa, grad)
VALUES (’Anderson’, ’'1987-10-22’, 3.9, 2009);
INSERT INTO students (name, birth, gpa, grad)
VALUES (’Jones’, ’1990—4-16", 2.4, 2012);
INSERT INTO students (name, birth, gpa, grad)
VALUES (’Hernandez’, ’'1989—-8-12’, 3.1, 2011);
INSERT INTO students (name, birth, gpa, grad)
VALUES (’Chen’, ’1990—2—4’, 3.2, 2011);

Delete row(s):
DELETE FROM students WHERE name=’Anderson ’;

Delete table:
DROP TABLE students;

7.1.1 Queries

Once you have a bunch of data in a relational database, which is often composed of many
tables, the real core of what you can do is write queries. Writing queries is an acquired
skill, and really you will learn it by practicing it and doing things, however, here we cover
some basic examples:

Show entire contents of a table:
SELECT % FROM students;

| id | name | birth | gpa | grad |
| 1 | Anderson | 1987-10-22 | 3.9 | 2009 |
| 2 | Jones | 1990-04—16 | 2.4 | 2012 |
| 3 | Hernandez | 1989-08-12 | 3.1 | 2011 |
| 4 | Chen | 1990-02-04 | 3.2 | 2011 |

Show just a few columns from a table:
SELECT name, gpa FROM students;

| Il |
T T T
| name | gpa |
Il Il |
T T T
| Anderson | 3.9 |
| Jones | 2.4 |
| Hernandez | 3.1 |
| Chen | 3.2 |
| Il |
T T T
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Filtering: only display a subset of the rows:

SELECT name, gpa
FROM students
WHERE gpa > 3.0

| name | gpa |
| Anderson | 3.9 |
| Hernandez | 3.1 |
| Chen | 3.2 |
Sorting:

SELECT gpa, name, grad
FROM students
WHERE gpa > 3.0
ORDER. BY gpa DESC;

| gpa | name | grad |
| 3.9 | Anderson | 2009 |
| 3.2 | Chen | 2011 |
| 3.1 | Hernandez | 2011 |
Updates:

UPDATE students
SET gpa = 2.6, grad = 2013
WHERE id = 2;

Joins

Joins are a way to manage relationships between tables. A join is a query that merges the
contents of 2 or more tables, and displays information from the results. Joins can produce
the equivalent of a linked list in a programming language, and many other effects.

Join example: many-to-one relationships

Students have advisors; add new table describing faculty.

f f f f
| id | name | title |
Il Il Il Il
| 1 | Fujimura | assocprof |
| 2 | Bolosky | prof |
Il Il Il Il
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Add new column advisor_id to the students table. This is a foreign key.

| id | name | birth | gpa | grad | advisor-id |
| 1 | Anderson | 1987-10-22 | 3.9 | 2009 | 2 |
| 2 | Jones | 1990—04—16 | 2.4 | 2012 | 1|
| 3 | Hernandez | 1989-08-—12 | 3.1 | 2011 | 1 |
| 4 | Chen | 1990-02-04 | 3.2 | 2011 | 1|

Example query:

SELECT s.name, s.gpa
FROM students s, advisors p
WHERE s . advisor_-id = p.id AND p.name = ’Fujimura’;

! Il

| name | gpa |
| Il |
T T T
| Jones | 2.4 |
| Hernandez | 3.1 |
| Chen | 3.2 |
Il Il |

A join creates the cross-product of 2 or more tables. This is (potentially) very compu-
tationally expensive! However, in practice, joins are optimized carefully by the database
system.

Join example: many-to-many relationship

Courses: students take many courses, courses have many students Add new table describing

courses:

1 I | I 1
| id | number | name | quarter |
| | | | |
T T T T T
| 1| CS142 | Web stuff | Winter 2009 |
| 2 | ART101 | Finger painting | Fall 2008 |
| 3 | ART101 | Finger painting | Winter 2009 |
| 4 | PE204 | Mud wrestling | Winter 2009 |
] | Il il |
T T T T T

Create a join table courses_students describing which students took which courses.

course_id student_id

— AW =
R
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Find all students who took a particular course:

SELECT s.name, c.quarter
FROM students s, courses c¢, courses_students cs
WHERE c¢.id = cs.course_id AND s.id = cs.student_id
AND c.number = ART101’;

| name | quarter |
| Jones | Fall 2008 |
| Chen | Fall 2008 \
| Anderson | Winter 2009 |
7.1.2 Notes

A few final remarks of things you should be aware of but we will not cover in detail. First,
tables have Indexes: these are used to speed up queries. Second, there is a concept called
Transactions, these are used to group operations together to provide predictable behavior
even when there are concurrent operations on the database. Finally, there is a lot more
to be learned on how to scale and speed up a SQL database for specific problems, but we
won’t get into all of the details. ..

7.2 MySQL and Python

After covering some basic SQL concepts, we will dig into using python to interface with
MySQL. Here I just list the basic steps and a number of examples.

If you do not already have MySQL installed, we must install it.

$ sudo apt—get install mysql-server

This command installs the MySQL server and various other packages. While installing the
package, we are prompted to enter a password for the MySQL root account.

$ apt—cache search MySQLdb

A few useful packages:
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e python-mysqldb - A Python interface to MySQL

e python-mysqldb-dbg - A Python interface to MySQL (debug extension)
e bibus - bibliographic database

e cikazo - graphical frontend for SANE designed for mass-scanning

Here we install the Python interface to the MySQL database. Both _mysql and MySQL
modules:

$ sudo apt—get install python—mysqldb

Next, we are going to create a new database user and a new database. We use the mysql
client.

$ mysql —u root —p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 30

Server version: 5.0.67—0ubuntu6 (Ubuntu)

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> SHOW DATABASES;

Database

|
T
\
1
information_schema |
mysql \

|

T

|
\
\
2 rows in set (0.00 sec)

We connect to the database using the root account. We show all available databases with
the SHOW DATABASES statement.

mysql> CREATE DATABASE testdb ;
Query OK, 1 row affected (0.02 sec)

We create a new testdb database. We will use this database throughout the tutorial.

mysql> CREATE USER ’testuser 'Q’localhost ’ IDENTIFIED BY ’test623 ’;
Query OK, 0 rows affected (0.00 sec)

mysql> USE testdb;
Database changed

mysql> GRANT ALL ON testdb.x TO ’testuser ’Q’localhost ’;
Query OK, 0 rows affected (0.00 sec)

mysql> quit;
Bye
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7.2.1 MySQLdb module

MySQLdb is a thin Python wrapper around _mysql. It is compatible with the Python
DB API, which makes the code more portable. Using this model is the preferred way of
working with the MySQL.

First example

In the first example, we will get the version of the MySQL database.

#!/usr/bin/python
# —*x— coding: utf-—-8 —x—

import MySQLdb as mdb
import sys

try:
con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’);

cur = con.cursor ()

cur . execute ("SELECT VERSION()”)

ver = cur.fetchone ()

print "Database version : %s 7 % ver
except mdb. Error, e:

print ”?Error %d: %s” % (e.args[0],e.args[1])
sys.exit (1)

finally :

if con:
con. close ()

In this script, we connect to the testdb database and execute the SELECT VERSION()
statement. This will return the current version of the MySQL database. We print it to the
console.

$ ./version.py
Database version : 5.5.9

Creating and populating a table

We create a table and populate it with some data.
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#!/usr /bin/python
# —x— coding: utf-—-8 —x—

import MySQLdb as mdb

con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’);
with con:
cur = con.cursor ()

cur.execute ("DROP TABLE IF EXISTS Writers”)

cur . execute ("CREATE TABLE Writers (Id INT PRIMARY KEY AUTOINCREMENT, \
Name VARCHAR(25))7)

cur.execute ("INSERT INTO Writers (Name) VALUES(’Jack London’)”)

cur.execute ("INSERT INTO Writers (Name) VALUES(’Honore de Balzac’)”)

cur.execute ("INSERT INTO Writers(Name) VALUES(’Lion Feuchtwanger’)”)

cur.execute ("INSERT INTO Writers (Name) VALUES(’Emile Zola’)”)

cur.execute ("INSERT INTO Writers (Name) VALUES(

)

Truman Capote’)”)

We create a “Writers” table and add five authors to it. After executing the script, we can
use the mysql client tool to select all data from the Writers table.

mysql> SELECT % FROM Writers;

Id | Name

\
Jack London |
Honore de Balzac |
\
\
\

Emile Zola

U W N =

|
|
| Lion Feuchtwanger
|
|

Truman Capote

\
\
|
\
\
\
5 rows in set (0.00 sec)

Retrieving data

Now that we have inserted some data into the database, we want to get it back.

#!/usr/bin/python
# —*— coding: utf—-8 —x—

import MySQLdb as mdb

con = mdb. connect (’localhost ', ’testuser’, ’test623’, ’testdb’);
with con:
cur = con.cursor ()
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cur.execute ("SELECT % FROM Writers”)
rows = cur.fetchall ()

for row in rows:
print row

In this example, we retrieve all data from the Writers table. Note the location of the
SQL query. Obviously here you can use all the fancy joins etc. that we discussed previ-
ously.

cur.execute ("SELECT * FROM Writers”)

This SQL statement selects all data from the Writers table.

rows = cur. fetchall ()
The fetchall() method gets all records. It returns a result set. Technically, it is a tuple of
tuples. Each of the inner tuples represent a row in the table.

Returning all data at a time may not be feasible. We can fetch rows one by one.

#!/usr /bin/python
# —x— coding: utf—8 —x—

import MySQLdb as mdb

con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’);
with con:
cur = con.cursor ()

cur . execute ("SELECT x FROM Writers”)
for i in range(cur.rowcount):

row = cur.fetchone ()
print row[0], row][1]

We again print the data from the Writers table to the console. This time, we fetch the
rows one by one.

The dictionary cursor

There are multiple cursor types in the MySQLdb module. The default cursor returns the
data in a tuple of tuples. When we use a dictionary cursor, the data is sent in a form of
Python dictionaries. This way we can refer to the data by their column names.
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#!/usr /bin/python
# —x— coding: utf-—-8 —x—

import MySQLdb as mdb

con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’)
with con:
cur = con.cursor (mdb. cursors.DictCursor)

cur.execute ("SELECT % FROM Writers LIMIT 47)
rows = cur. fetchall ()

for row in rows:
print row[”1d”], row[” Name”]

In this example, we get the first four rows of the Writers table using the dictionary cur-
SOT.

Column headers

Next we will show, how to print column headers with the data from the database ta-
ble.

#!/usr/bin/python
# —+— coding: utf—8 —x—

import MySQLdb as mdb

con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’)
with con:
cur = con.cursor ()

cur . execute ("SELECT % FROM Writers LIMIT 57)
rows = cur. fetchall ()

desc = cur.description

print "%s %3s” % (desc[0][0], desc[1][0])

for row in rows:
print "%2s %3s” % row

Again, we print the contents of the Writers table to the console. Now, we include the
names of the columns too. The column names are considered to be the 'meta data’. It is
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obtained from the cursor object.

Prepared statements

Now we will concern ourselves with prepared statements. When we write prepared state-
ments, we use placeholders instead of directly writing the values into the statements. Pre-
pared statements increase security and performance. The Python DB API specification
suggests 5 different ways how to build prepared statements. The MySQLdb module sup-
ports one of them, the ANSI printf format codes.

#!/usr /bin/python
# —x— coding: utf—8 —x—

import MySQLdb as mdb

con = mdb.connect (’localhost >, ’testuser’, ’test623’, ’testdb’)
with con:
cur = con.cursor ()

cur.execute ("UPDATE Writers SET Name = %s WHERE Id = %s”,
(?”Guy de Maupasant”, 747))

print ”Number of rows updated:”, cur.rowcount

We change the name of the author we are looking for dynamically.

This was only a very basic example of the possibilities of Python in combination with
MySQL. You will have a chance to play with these when you are doing the assign-
ments.

7.3 Non relational databases (NoSQL): Introduction

NoSQL is not a tool, but an ecosystem composed of several complimentary and competing
tools. The tools branded with the NoSQL monicker provide an alternative to SQL-based
relational database systems for storing data. To understand NoSQL, we have to understand
the space of available tools, and see how the design of each one explores the space of data
storage possibilities.

If you are considering using a NoSQL storage system, you should first understand the wide
space of options that NoSQL systems span. NoSQL systems do away with many of the
traditional comforts of relational database systems, and operations which were typically
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encapsulated behind the system boundary of a database are now left to application de-
signers. This requires you to take on the hat of a systems architect, which requires a more
in-depth understanding of how such systems are built.

7.3.1 What’s in a Name?

In defining the space of NoSQL, let’s first take a stab at defining the name. Taken literally,
a NoSQL system presents a query interface to the user that is not SQL. The NoSQL
community generally takes a more inclusive view, suggesting that NoSQL systems provide
alternatives to traditional relational databases, and allow developers to design projects
which use Not Only a SQL interface. In some cases, you might replace a relational database
with a NoSQL alternative, and in others you will employ a mix-and-match approach to
different problems you encounter in application development.

Before diving into the world of NoSQL, let’s explore the cases where SQL and the relational
model suit your needs, and others where a NoSQL system might be a better fit.

7.3.2 SQL and the Relational Model

SQL is a declarative language for querying data. A declarative language is one in which a
programmer specifies what they want the system to do, rather than procedurally defining
how the system should do it. A few examples include: find the record for employee 39,
project out only the employee name and phone number from their entire record, filter
employee records to those that work in accounting, count the employees in each department,
or join the data from the employees table with the managers table.

To a first approximation, SQL allows you to ask these questions without thinking about how
the data is laid out on disk, which indices to use to access the data, or what algorithms to
use to process the data. A significant architectural component of most relational databases
is a query optimizer, which decides which of the many logically equivalent query plans to
execute to most quickly answer a query. These optimizers are often better than the average
database user, but sometimes they do not have enough information or have too simple a
model of the system in order to generate the most efficient execution.

Relational databases, which are the most common databases used in practice, follow the
relational data model. In this model, different real-world entities are stored in different
tables. For example, all employees might be stored in an Employees table, and all depart-
ments might be stored in a Departments table. Each row of a table has various properties
stored in columns. For example, employees might have an employee id, salary, birth date,
and first/last names. Each of these properties will be stored in a column of the Employees
table.
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The relational model goes hand-in-hand with SQL. Simple SQL queries, such as filters,
retrieve all records whose field matches some test (e.g., employeeid = 3, or salary ; $20000).
More complex constructs cause the database to do some extra work, such as joining data
from multiple tables (e.g., what is the name of the department in which employee 3 works?).
Other complex constructs such as aggregates (e.g., what is the average salary of my em-
ployees?) can lead to full-table scans.

The relational data model defines highly structured entities with strict relationships be-
tween them. Querying this model with SQL allows complex data traversals without too
much custom development. The complexity of such modeling and querying has its limits,
though:

e Complexity leads to unpredictability. SQL’s expressiveness makes it challenging to
reason about the cost of each query, and thus the cost of a workload. While simpler
query languages might complicate application logic, they make it easier to provision
data storage systems, which only respond to simple requests.

e There are many ways to model a problem. The relational data model is strict: the
schema assigned to each table specifies the data in each row. If we are storing less
structured data, or rows with more variance in the columns they store, the relational
model may be needlessly restrictive. Similarly, application developers might not find
the relational model perfect for modeling every kind of data. For example, a lot
of application logic is written in object-oriented languages and includes high-level
concepts such as lists, queues, and sets, and some programmers would like their
persistence layer to model this.

e If the data grows past the capacity of one server, then the tables in the database
will have to be partitioned across computers. To avoid JOINs having to cross the
network in order to get data in different tables, we will have to denormalize it.
Denormalization stores all of the data from different tables that one might want to
look up at once in a single place. This makes our database look like a key-lookup
storage system, leaving us wondering what other data models might better suit the
data.

It’s generally not wise to discard many years of design considerations arbitrarily. When
you consider storing your data in a database, consider SQL and the relational model, which
are backed by decades of research and development, offer rich modeling capabilities, and
provide easy-to-understand guarantees about complex operations. NoSQL is a good option
when you have a specific problem, such as large amounts of data, a massive workload, or
a difficult data modeling decision for which SQL and relational databases might not have
been optimized.
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7.3.3 NoSQL Inspirations

The NoSQL movement finds much of its inspiration in papers from the research community.
While many papers are at the core of design decisions in NoSQL systems, two stand out
in particular.

Google’s BigTable presents an interesting data model, which facilitates sorted storage of
multi-column historical data. Data is distributed to multiple servers using a hierarchical
range-based partitioning scheme, and data is updated with strict consistency (a concept
that we will eventually define in).

Amazon’s Dynamo uses a different key-oriented distributed datastore. Dynamo’s data
model is simpler, mapping keys to application-specific blobs of data. The partitioning
model is more resilient to failure, but accomplishes that goal through a looser data consis-
tency approach called eventual consistency.

We will dig into each of these concepts in more detail, but it is important to understand
that many of them can be mixed and matched. Some NoSQL systems such as HBase!
sticks closely to the BigTable design. Another NoSQL system named Voldemort? replicates
many of Dynamo’s features. Still other NoSQL projects such as Cassandra® have taken
some features from BigTable (its data model) and others from Dynamo (its partitioning
and consistency schemes).

7.3.4 Characteristics and Considerations

NoSQL systems part ways with the hefty SQL standard and offer simpler but piecemeal
solutions for architecting storage solutions. These systems were built with the belief that
in simplifying how a database operates over data, an architect can better predict the
performance of a query. In many NoSQL systems, complex query logic is left to the
application, resulting in a data store with more predictable query performance because of
the lack of variability in queries

NoSQL systems part with more than just declarative queries over the relational data.
Transactional semantics, consistency, and durability are guarantees that organizations such
as banks demand of databases. Transactions provide an all-or-nothing guarantee when
combining several potentially complex operations into one, such as deducting money from
one account and adding the money to another. Consistency ensures that when a value is
updated, subsequent queries will see the updated value. Durability guarantees that once a

"http://hbase.apache.org/
2http://project-voldemort.com/
3http://cassandra.apache.org/
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value is updated, it will be written to stable storage (such as a hard drive) and recoverable
if the database crashes.

NoSQL systems relax some of these guarantees, a decision which, for many non-banking
applications, can provide acceptable and predictable behavior in exchange for improved
performance. These relaxations, combined with data model and query language changes,
often make it easier to safely partition a database across multiple machines when the data
grows beyond a single machine’s capability.

NoSQL systems are still very much in their infancy. The architectural decisions that go
into the systems described in this chapter are a testament to the requirements of various
users. The biggest challenge in summarizing the architectural features of several open
source projects is that each one is a moving target.

As you think about NoSQL systems, here is a roadmap of considerations:

e Data and query model: Is your data represented as rows, objects, data structures, or
documents? Can you ask the database to calculate aggregates over multiple records?

e Durability: When you change a value, does it immediately go to stable storage? Does
it get stored on multiple machines in case one crashes?

e Scalability: Does your data fit on a single server? Do the amount of reads and writes
require multiple disks to handle the workload?

e Partitioning: For scalability, availability, or durability reasons, does the data need to
live on multiple servers? How do you know which record is on which server?

e Consistency: If you've partitioned and replicated your records across multiple servers,
how do the servers coordinate when a record changes?

e Transactional semantics: When you run a series of operations, some databases allow
you to wrap them in a transaction, which provides some subset of ACID (Atomicity,
Consistency, Isolation, and Durability) guarantees on the transaction and all others
currently running. Does your business logic require these guarantees, which often
come with performance tradeoffs?

e Single-server performance: If you want to safely store data on disk, what on-disk data
structures are best-geared toward read-heavy or write-heavy workloads? Is writing
to disk your bottleneck?

e Analytical workloads: We’re going to pay a lot of attention to lookup-heavy workloads
of the kind you need to run a responsive user-focused web application. In many cases,
you will want to build dataset-sized reports, aggregating statistics across multiple
users for example. Does your use-case and toolchain require such functionality?
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7.3.5 NoSQL Data and Query Models

The data model of a database specifies how data is logically organized. Its query model
dictates how the data can be retrieved and updated. Common data models are the rela-
tional model, key-oriented storage model, or various graph models. Query languages you
might have heard of include SQL, key lookups, and MapReduce. NoSQL systems combine
different data and query models, resulting in different architectural considerations.

Key-based NoSQL Data Models

NoSQL systems often part with the relational model and the full expressivity of SQL by
restricting lookups on a dataset to a single field. For example, even if an employee has
many properties, you might only be able to retrieve an employee by her ID. As a result,
most queries in NoSQL systems are key lookup-based. The programmer selects a key to
identify each data item, and can, for the most part, only retrieve items by performing a
lookup for their key in the database.

In key lookup-based systems, complex join operations or multiple-key retrieval of the same
data might require creative uses of key names. A programmer wishing to look up an em-
ployee by his employee ID and to look up all employees in a department might create
two key types. For example, the key employee:30 would point to an employee record
for employee ID 30, and employee_departments:20 might contain a list of all employees
in department 20. A join operation gets pushed into application logic: to retrieve em-
ployees in department 20, an application first retrieves a list of employee IDs from key
employee_departments:20, and then loops over key lookups for each employee:ID in the
employee list.

The key lookup model is beneficial because it means that the database has a consistent
query pattern—the entire workload consists of key lookups whose performance is relatively
uniform and predictable. Profiling to find the slow parts of an application is simpler, since
all complex operations reside in the application code. On the flip side, the data model logic
and business logic are now more closely intertwined, which muddles abstraction.

Let’s quickly touch on the data associated with each key. Various NoSQL systems offer
different solutions in this space.

Key-Value Stores
The simplest form of NoSQL store is a key-value store. Each key is mapped to a value con-

taining arbitrary data. The NoSQL store has no knowledge of the contents of its payload,
and simply delivers the data to the application. In our Employee database example, one
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might map the key employee:30 to a blob containing JSON or a binary format such as Pro-
tocol Buffers?, Thrift®, or Avro® in order to encapsulate the information about employee
30.

If a developer uses structured formats to store complex data for a key, she must operate
against the data in application space: a key-value data store generally offers no mechanisms
for querying for keys based on some property of their values. Key-value stores shine in
the simplicity of their query model, usually consisting of set, get, and delete primitives,
but discard the ability to add simple in-database filtering capabilities due to the opacity
of their values. Voldemort, which is based on Amazon’s Dynamo, provides a distributed
key-value store. BDB7 offers a persistence library that has a key-value interface.

Key-Data Structure Stores

Key-data structure stores, made popular by Redis®, assign each value a type. In Redis, the
available types a value can take on are integer, string, list, set, and sorted set. In addition
to set/get/delete, type-specific commands, such as increment/decrement for integers, or
push/pop for lists, add functionality to the query model without drastically affecting per-
formance characteristics of requests. By providing simple type-specific functionality while
avoiding multi-key operations such as aggregation or joins, Redis balances functionality
and performance.

Key-Document Stores

Key-document stores, such as CouchDB?, MongoDB!, and Riak'', map a key to some
document that contains structured information. These systems store documents in a JSON
or JSON-like format. They store lists and dictionaries, which can be embedded recursively
inside one-another.

MongoDB'? separates the keyspace into collections, so that keys for Employees and Depart-
ment, for example, do not collide. CouchDB and Riak leave type-tracking to the developer.

“http://code.google.com/p/protobuf/
*http://thrift.apache.org/
Shttp://avro.apache.org/
"http://wuw.oracle.com/technetwork/database/berkeleydb/overview/index . html
Shttp://redis.io/
%http://couchdb.apache.org/

Ohttp://www.mongodb. org/

"http://www.basho.com/products_riak_overview.php

12WWe will be working with MongoDB.
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The freedom and complexity of document stores is a double-edged sword: application de-
velopers have a lot of freedom in modeling their documents, but application-based query
logic can become exceedingly complex.

BigTable Column Family Stores

HBase and Cassandra base their data model on the one used by Google’s BigTable. In this
model, a key identifies a row, which contains data stored in one or more Column Families
(CFs). Within a CF, each row can contain multiple columns. The values within each
column are timestamped, so that several versions of a row-column mapping can live within

a CF.

Conceptually, one can think of Column Families as storing complex keys of the form
(row ID, CF, column, timestamp), mapping to values which are sorted by their keys.
This design results in data modeling decisions which push a lot of functionality into the
keyspace. It is particularly good at modeling historical data with timestamps. The model
naturally supports sparse column placement since row IDs that do not have certain columns
do not need an explicit NULL value for those columns. On the flip side, columns which
have few or no NULL values must still store the column identifier with each row, which
leads to greater space consumption.

Each project data model differs from the original BigTable model in various ways, but
Cassandra’s changes are most notable. Cassandra introduces the notion of a supercolumn
within each CF to allow for another level of mapping, modeling, and indexing. It also does
away with a notion of locality groups, which can physically store multiple column families
together for performance reasons.

Graph Storage

One class of NoSQL stores are graph stores. Not all data is created equal, and the rela-
tional and key-oriented data models of storing and querying data are not the best for all
data. Graphs are a fundamental data structure in computer science, and systems such as
HyperGraphDB'3 and Neo4J'* are two popular NoSQL storage systems for storing graph-
structured data. Graph stores differ from the other stores we have discussed thus far in
almost every way: data models, data traversal and querying patterns, physical layout of
data on disk, distribution to multiple machines, and the transactional semantics of queries.
We can not do these stark differences justice given space limitations, but you should be
aware that certain classes of data may be better stored and queried as a graph.

3http://www.hypergraphdb.org/index
Yhttp://neo4j.org/
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Complex Queries

There are notable exceptions to key-only lookups in NoSQL systems. MongoDB allows
you to index your data based on any number of properties and has a relatively high-level
language for specifying which data you want to retrieve. BigTable-based systems support
scanners to iterate over a column family and select particular items by a filter on a column.
CouchDB allows you to create different views of the data, and to run MapReduce tasks
across your table to facilitate more complex lookups and updates. Most of the systems have
bindings to Hadoop or another MapReduce framework to perform dataset-scale analytical
queries.

Schema-free Storage

A cross-cutting property of many NoSQL systems is the lack of schema enforcement in the
database. Even in document stores and column family-oriented stores, properties across
similar entities are not required to be the same. This has the benefit of supporting less struc-
tured data requirements and requiring less performance expense when modifying schemas
on-the-fly. The decision leaves more responsibility to the application developer, who now
has to program more defensively. For example, is the lack of a lastname property on an
employee record an error to be rectified, or a schema update which is currently propagating
through the system? Data and schema versioning is common in application-level code after
a few iterations of a project which relies on sloppy-schema NoSQL systems.

7.3.6 Python and Mongo

You see that there are many database systems out there, and choices will depend on your
problem at hand, your experience, etc. However, here is an example using MongoDB with
Python.

Before we start, make sure that you have the PyMongo distribution installed. In the
Python shell, the following should run without raising an exception:

>>> import pymongo

This tutorial also assumes that a MongoDB instance is running on the default host and port.
Assuming you have downloaded and installed MongoDB, you can start it like so:

$ mongod
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Making a Connection with MongoClient

The first step when working with PyMongo is to create a MongoClient to the running
mongod instance. Doing so is easy:

>>> from pymongo import MongoClient
>>> client = MongoClient ()

The above code will connect on the default host and port. We can also specify the host
and port explicitly, as follows:

>>> client = MongoClient (’localhost >, 27017)

Or use the MongoDB URI format:
>>> client = MongoClient (’mongodb://localhost:27017/)

Getting a Database

A single instance of MongoDB can support multiple independent databases. When work-
ing with PyMongo you access databases using attribute style access on MongoClient in-
stances:

>>> db = client .test_database

If your database name is such that using attribute style access wont work (like test-
database), you can use dictionary style access instead:

>>> db = client [’ test —database ’]

Getting a Collection

A collection is a group of documents stored in MongoDB, and can be thought of as roughly
the equivalent of a table in a relational database. Getting a collection in PyMongo works
the same as getting a database:

>>> collection = db.test_collection

or (using dictionary style access):

>>> collection = db[’test—collection ’]

An important note about collections (and databases) in MongoDB is that they are created
lazily - none of the above commands have actually performed any operations on the Mon-
goDB server. Collections and databases are created when the first document is inserted
into them.
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Documents

Data in MongoDB is represented (and stored) using JSON-style documents. In PyMongo
we use dictionaries to represent documents. As an example, the following dictionary might
be used to represent a blog post:

>>> import datetime

>>> post = {”author”: "Mike”,

"text”: "My first blog post!”,
"tags”: [”mongodb”, ”python”, ”pymongo”],
7date”: datetime.datetime.utcnow ()}

Note that documents can contain native Python types (like datetime.datetime instances)
which will be automatically converted to and from the appropriate BSON types.

Inserting a Document

To insert a document into a collection we can use the insert() method:

>>> posts = db.posts

>>> post_id = posts.insert (post)
>>> post_id

Objectld (7... ")

When a document is inserted a special key, ” _id”, is automatically added if the document
doesnt already contain an ” _id” key. The value of ” _id” must be unique across the collection.
insert() returns the value of ”_id” for the inserted document. For more information, see
the documentation on _id.

After inserting the first document, the posts collection has actually been created on the
server. We can verify this by listing all of the collections in our database:

>>> db.collection_names ()

[u’system.indexes’, u’posts’]
Note The system.indexes collection is a special internal collection that was created auto-
matically.

Getting a Single Document With find_one()

The most basic type of query that can be performed in MongoDB is find_one(). This
method returns a single document matching a query (or None if there are no matches). It
is useful when you know there is only one matching document, or are only interested in
the first match. Here we use find_one() to get the first document from the posts collec-
tion:

83



>>> posts.find_one ()

{u’date ’: datetime.datetime (...), u’text’: u’My first blog post!’, u’_id ’:
Objectld (’...7), u’author ’: u’Mike’, u’tags’: [u’mongodb’, u’python’, u’
pymongo '] }

The result is a dictionary matching the one that we inserted previously.

Note The returned document contains an ”_id”, which was automatically added on insert.
find_one() also supports querying on specific elements that the resulting document must
match. To limit our results to a document with author Mike we do:

>>> posts.find_one ({” author”: ”Mike”})

{u’date ’: datetime.datetime (...), u’text’: u’My first blog post!’, u’_id ’:
ObjectId (’...7), u’author’: u’Mike’, u’tags ’: [u’mongodb’, u’python’, u’
pymongo’] }

If we try with a different author, like Eliot, well get no result:

>>> posts.find_one ({” author”: ”Eliot”})
>>>
Querying By Objectld

We can also find a post by its _id, which in our example is an Objectld:

>>> post_id
Objectld (...)
>>> posts.find_one ({” _id”: post_id})

{u’date ’: datetime.datetime (...), u’text’: u’My first blog post!’, u’_id ’:
ObjectId (’...7), u’author’: u’Mike’, u’tags’: [u’mongodb’, u’python’, u’
pymongo '] }

Note that an Objectld is not the same as its string representation:

>>> post_id_as_str = str(post_id)
>>> posts.find_one({” _id”: post_-id_as_str}) # No result
>>>

A common task in web applications is to get an Objectld from the request URL and find
the matching document. Its necessary in this case to convert the Objectld from a string
before passing it to find_one:

from bson.objectid import Objectld
# The web framework gets post_id from the URL and passes it as a string
def get(post_id):

# Convert from string to Objectld:
document = client.db. collection.find_one ({’_id >: ObjectIld (post-id)})
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A Note On Unicode Strings

You probably noticed that the regular Python strings we stored earlier look different when
retrieved from the server (e.g. uMike instead of Mike). A short explanation is in or-
der.

MongoDB stores data in BSON format. BSON strings are UTF-8 encoded so PyMongo
must ensure that any strings it stores contain only valid UTF-8 data. Regular strings (jtype
strj) are validated and stored unaltered. Unicode strings (jtype unicode;) are encoded
UTF-8 first. The reason our example string is represented in the Python shell as uMike
instead of Mike is that PyMongo decodes each BSON string to a Python unicode string,
not a regular str.

Bulk Inserts

In order to make querying a little more interesting, lets insert a few more documents. In
addition to inserting a single document, we can also perform bulk insert operations, by
passing an iterable as the first argument to insert(). This will insert each document in the
iterable, sending only a single command to the server:

>>> new_posts = [{” author”: ”Mike”,
?text”: ”Another post!”,
"tags”: [”bulk”, ”insert”],
7date”: datetime.datetime (2009, 11, 12, 11, 14)},
{”? author”: ” Eliot”,
”title”: ”"MongoDB is fun”,
?text”: "and pretty easy too!”

7date”: datetime.datetime (2009, 11, 10, 10, 45)}]
>>> posts.insert (new_posts)
[ObjectId (’...7), Objectld (’...")]

There are a couple of interesting things to note about this example:

e The call to insert() now returns two Objectld instances, one for each inserted docu-
ment.

e new_posts[1] has a different shape than the other posts - there is no "tags” field and
weve added a new field, "title”.

e This is what we mean when we say that MongoDB is schema-free.
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Querying for More Than One Document

To get more than a single document as the result of a query we use the find() method.
find() returns a Cursor instance, which allows us to iterate over all matching documents.
For example, we can iterate over every document in the posts collection:

>>> for post in posts.find():
post

{u’date ’: datetime.datetime (...), u’text’: u’My first blog post!’, u’_id ’:
ObjectId (’...7), u’author’: u’Mike’, u’tags ’: [u’mongodb’, u’python’, u
pymongo '] }

{u’date ’: datetime.datetime (2009, 11, 12, 11, 14), u’text ’: u’Another post!’,
u’_id ’: Objectld (’..."), u’author’: u’Mike’, u’tags’: [u’bulk’, u’insert

{u’date ’: datetime.datetime (2009, 11, 10, 10, 45), u’text’: u’and pretty easy
too!’, u’_.id ’: ObjectId (’...’), u’author’: u’Eliot’, u’title ’: u’MongoDB
is fun’}

bl

Just like we did with find_one(), we can pass a document to find() to limit the returned
results. Here, we get only those documents whose author is Mike:

>>> for post in posts.find ({” author”: "Mike”}):
post

{u’date ’: datetime.datetime (...), u’text’: u’My first blog post!’, u’_id ’:
ObjectId (’...7), u’author’: u’Mike’, u’tags’: [u’mongodb’, u’python’, u’
pymongo '] }

{u’date ’: datetime.datetime (2009, 11, 12, 11, 14), u’text ’: u’Another post!’,
u’_id ’: Objectld (’...7), u’author’: u’Mike’, u’tags’: [u’bulk’, u’insert
1}

Counting

If we just want to know how many documents match a query we can perform a count|()
operation instead of a full query. We can get a count of all of the documents in a collec-
tion:

>>> posts.count ()
3

or just of those documents that match a specific query:

>>> posts. find ({” author”: "Mike” }).count ()
2
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Further notes

MongoDB supports many different types of advanced queries. As an example, lets perform
a query where we limit results to posts older than a certain date, but also sort the results
by author:

>>> d = datetime.datetime (2009, 11, 12, 12)

>>> for post in posts.find ({"date”: {?$1t”: d}}).sort(”author”):
print post

{u’date ’: datetime.datetime (2009, 11, 10, 10, 45), u’text’: u’and pretty easy

too!’, u’.id ’: ObjectId (’...’), u’author’: u’Eliot’, u’title ’: u’MongoDB
is fun’}

{u’date ’: datetime.datetime (2009, 11, 12, 11, 14), u’text ’: u’Another post!’,
u’_id ’: Objectld (’...7), u’author’: u’Mike’, u’tags’: [u’bulk’, u’insert
1}

Here we use the special ”$lt” operator to do a range query, and also call sort() to sort the
results by author.

To make the above query fast we can add a compound index on ”date” and ”author”. To
start, lets use the explain() method to get some information about how the query is being
performed without the index:

>>> posts.find ({?date”: {"$1t”: d}}).sort(”author”).explain()[” cursor”]
u’BasicCursor’

>>> posts.find ({"date”: {?$1t”: d}}).sort(”author”).explain()[” nscanned”]
3

We can see that the query is using the BasicCursor and scanning over all 3 documents in
the collection. Now lets add a compound index and look at the same information:

>>> from pymongo import ASCENDING, DESCENDING

>>> posts.create_index ([(” date” , DESCENDING) , (” author”, ASCENDING) ])
u’date_—1_author_1"’

>>> posts.find ({"date”: {?$1t”: d}}).sort(”author”).explain()[” cursor”]
u’BtreeCursor date_-—1_author_1"’

>>> posts. find ({?date”: {"$1t”: d}}).sort(”author”).explain () [” nscanned”]
2

Now the query is using a BtreeCursor (the index) and only scanning over the 2 matching
documents.
See also The MongoDB documentation on indexes.

Finally, Mongo support Map/Reduce: a very general way of specifying “queries” that are
easily distributed. We will dig into Map/Reduce more in the next lecture.
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There are a number of online tutorials I can suggest (some of which inspired the current
material):

7.4

http
http
http
http
http

http

://www.tutorialspoint.com/mysql/mysql-introduction.htm
://zetcode.com/db/mysqlpython/
://www.hongkiat.com/blog/webdev-with-mongodb-partil/
://docs.mongodb.org/ecosystem/drivers/python/
://api.mongodb.org/python/2.0/examples/map_reduce.html

://www.w3schools.com/json/

Assignment

SQL

assignments:
Install MySQL on your machine

Use the MySQL command line interface to create 2 tables. Let one table obtain
the names of 10 students, their age, and their study major. Let the other table
contain 50 rows which describe for each student what their grades were on 5
different exams.

Write a python script to retrieve the mean and standard deviation of all student
jointly, and of each student individually.

NOTE: You are free to pick names and grades etc. yourself. This is just an
exercise.

e MongoDB assignments:

Simulate a dataset, using the regression methods we covered in the previous
lectures, which contains data of 10.000 houses. The data should contain the
number of square feet, the number of rooms, an (incremental) ID for the house,
and the price (the latter of which you simulate by making a model that predict
prices based on the square feet and the number of rooms.

Store the data in MongoDB: how do you do it and why?
Add a short description to 10 of the houses.

Select all houses that have a description.
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— Write the python code to select all houses with a price higher then z, and a
number of rooms y. Inspect how the query is carried out.

e Done? Make sure to explore MongoDB in more detail. How would you store the data
we used in Lecture 2 (spam classification) in MongoDB?

89



Chapter 8

Lecture 8: Map/Reduce & REST
APT’s

This lecture wraps up our 2-session section on practicalities for the use of Al on the web.
We have covered SQL and No-SQL databases in the previous lecture, and you were briefly
introduced to queries. This lecture we cover two slightly more advanced (and distinct!)
topics: (1) Map / Reduce, and (2) REST APT’s.

The topics are distinct, but both are vital to the current day Web infrastructure and for the
use of heavy AI techniques on the web. The first, Map / Reduce (or shortly MR) provides
a method of dealing with extremely large (and often distributed) datasets. The second,
(REST) APT’s, provide a method of sending around data and events between servers: this
is vital for obvious reasons.

This lecture should teach you:
e The basic ideas behing Map / Reduce (MR)
e The use of MR when using Mongo DB
e You should be able to implement simple MR scripts
e You will know what (REST) API’s are.
e You will be able to send around JSON objects (and thus data) using REST API’s.
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8.1 Map Reduce Basics

Naive approaches designed for traditional amounts of data do not typically scale to big
data. (e.g. invertibility of matrices, curse of dimensionality, etc.)

Usually we can use some combination of the following methods to scale to big data:
1. Assuming that the data has inherently lower-dimensional structure
e Sparsity
e Conditional independence (so that we can handle things separately)
2. Fast algorithms
e Parallelization
e Typically linear time algorithms or better
3. Methodology that avoids the need to fit the “full” data
e Consensus Monte Carlo
e Bag of Little Bootstraps

However, even once we have a method that is able to scale to big data, we have to find out
a way to access the huge or complex data sets with practical ways. Storing stuff in Python
memory will hardly work as our data grows larger and larger and our web applications
serve intelligent functionality to millions of users all over the Globe. So, we need solutions
to deal with (extremely) large and often distributed datasets.

A method that has become extremely popular over the last few years to deal with extremely
large data is called Map / Reduce. This is what we will cover in this lecture. Note that we
will only cover the basics of MR: more info is easily found online, but we don’t have the
time to really dig into it. Also note that MR solves particular large scale data problems
very well (it allows for easy parallelization of analysis tasks), but not others (it is not very
good for “real-time” analysis). So despite the fact that we are covering MR in this lecture,
not that there is more in live than MR.

There are two-steps to programming a MapReduce program:

1. Map: For every data element, a function is applied to that element, and it returns a
(key, value) pair. So, the mapper “transverses” all DB records (or documents), and
“emits” part of these data using a key value pair.
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2. Reduce: For every element with the same key, a function is applied to combine the
values. So, the reducer “receives” all emits with the same key, and a list of all
values submitted for that key.

There could be potentially millions or billions of such pairs! You could take the sum of the
values, or any useful statistic.

Note that any MR application will do a bunch of stuff “under the hood”: the emitted key’s
will be sorted and shuffled, the whole task will be distributed over nodes, etc. etc. But, the
nice thing is that you don’t have to worry about these things. However, it is good to have
some idea of what happens. Figure 8.1 provides a schematic overview of the processes that
happen when using MR for counting unique words. We will cover this example in more
detail below.

Figure 8.1: Overview of the MR process for word count.

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2
Deer, 1 » Bear, 1
Deer Bear River Bear, 1
River, 1

Car, 1
Car, 1 Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 W—»
Deer, 1

Deer, 1
Deer Car Bear Car, 1
Bear, 1 River, 1
River, 1

8.1.1 Example 1: The classic word count.
Word count is the “hello world” of the user of MR. Suppose we want to count the number
of times distinct words appear in a large set of text documents.

Let’s suppose we are working with only 1 document for now, containing the following
text:

Angry Bob was angry that little Bob was angry at big Bob.

For the map step we need to decide on what (key, value) pairs to emit. For each word,
emit: (word, 1). This will result in the following key-value pairs that are emitted:

92




(Angry, 1)
(Bob, 1)
(was, 1)
(angry, 1)
(that, 1)
(little , 1)
(Bob, 1)
(was, 1)
(angry, 1)
(at, 1)
(big, 1)
(Bob, 1)

The code would look something like this:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, ”17);

Next, for the reduce step, (conceptually) all key-value pairs with the same key (i.e. the
same words) are combined. The reduce function receives data like this:

(Angry, 1)
(Bob, 1)
(Bob, 1)
(Bob, 1)
(was, 1)
(was, 1)
(angry, 1)

(angry, 1)

We need a reduce function to apply to the set of values within each unique key. Here, that
is just a sum. The function looks like this:

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int word_count = 0;
for each v in values:
word_count += Parselnt (v);
Emit (key, AsString(word_count));
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If you’ve really been paying attention, you might be asking yourself: Why didn’t we simply
use sum = values.length?. This would seem like an efficient approach when you are essen-
tially summing an array of 1s. The fact is that reduce isn’t always called with a full and
perfect set of intermediate date. As such, reduce must always be idempotent. Eventually,
it will output something like:

(Angry, 1)
(Bob, 3)
(was, 2)
(angry, 2)
(that, 1)
(little , 1)
(at, 1)
(big, 1)

Which means we have now counted all the distinct words in this document using MR. 1
hope that gives you somewhat a gist of how MR works.

We will now turn to an example using MongoDB and Python.

8.1.2 Map Reduce Using MognoDB and Python.
This example shows how to use the map_reduce method to perform map/reduce style aggre-
gations on data. This is again a word count, but now using MongoDB and Python.

To start, well insert some example data which we can perform map /reduce queries on:

>>> from pymongo import Connection

>>> db = Connection (). map_reduce_example

>>> db.things.insert ({"x”: 1, "tags”: ["dog”, "cat”]})
ObjectId (7... ")

>>> db.things.insert ({"x”: 2, "tags”: ["cat”]})

ObjectId (... ")

>>> db.things.insert ({"x”: 3, ”"tags”: ["mouse”, "cat”, "dog”]})
Objectld (’...")

>>> db.things.insert ({"x”: 4, "tags”: []})

ObjectId (7... ")

Now well define our map and reduce functions. In this case were performing the same
operation as in the MongoDB Map/Reduce documentation - counting the number of oc-
currences for each tag in the tags array, across the entire collection.

Our map function just emits a single (key, 1) pair for each tag in the array:

>>> from bson.code import Code
>>> map = Code(” function () {”
.. ”  this.tags.forEach(function(z) {”
7 emit(z, 1);”
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The reduce function sums over all of the emitted values for a given key:

>>> reduce = Code(” function (key, values) {”

var total = 0;”

7 for (var i = 0; i < values.length; i++) {7
total += values[i];”

” }77

” return total;”

”» }7’ )
Note again that we cant just return values.length as the reduce function might be called
iteratively on the results of other reduce steps.

Finally, we call map_reduce and iterate over the result collection:

>>> result = db.things.map_reduce(map, reduce, ”"myresults”)
>>> for doc in result.find():

print doc
{u’-.id ’: u’cat’, u’value’: 3.0}
{u_.id ’: u’dog’, u’value’: 2.0}
{u’_.id ’: u’mouse’, u’value’: 1.0}

Note that there are many more things your can do, we are really just scratching the surface
here.

8.2 REST API’s

This section of the course is a bit odd, since it does not really deal with Al, however it does
deal with how data is handled on the web, and how you can send data from one server or ma-
chine to the other. Obviously this is something you might often use in real life applications:
you might have a mobile phone that is measuring data from a user, and that data needs to
be send to a bunch of webservers to be analyzed using MR, before it forwarded to the users
watch to display the results. Despite the fact that there are many many options to create
such functionality, we will briefly dig into REST API’s here as a method to make these
things work. Note by the way that I am assuming familiarity with JSON (a data structure,
see www. json.org). The content we are discussing here is partly taken from http://code.
tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340

In recent years REST (REpresentational State Transfer) has emerged as the standard
architectural design for web services and web APIs.
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8.2.1 What is REST?

The characteristics of a REST system are defined by six design rules:

e Client-Server: There should be a separation between the server that offers a service,
and the client that consumes it.

e Stateless: Each request from a client must contain all the information required by the
server to carry out the request. In other words, the server cannot store information
provided by the client in one request and use it in another request.

e Cacheable: The server must indicate to the client if requests can be cached or not.

e Layered System: Communication between a client and a server should be standard-
ized in such a way that allows intermediaries to respond to requests instead of the
end server, without the client having to do anything different.

e Uniform Interface: The method of communication between a client and a server must
be uniform.

e Code on demand: Servers can provide executable code or scripts for clients to execute
in their context. This constraint is the only one that is optional.

8.2.2 What is a RESTful web service?

The REST architecture was originally designed to fit the HT'TP protocol that the world
wide web uses.

Central to the concept of RESTful web services is the notion of resources. Resources are
represented by URIs. The clients send requests to these URIs using the methods defined
by the HTTP protocol, and possibly as a result of that the state of the affected resource
changes.

The HTTP request methods are typically designed to affect a given resource in standard
ways:

The REST design does not require a specific format for the data provided with the requests.
In general data is provided in the request body as a JSON blob, or sometimes as arguments
in the query string portion of the URL.

8.2.3 Designing a simple web service

The task of designing a web service or API that adheres to the REST guidelines then
becomes an exercise in identifying the resources that will be exposed and how they will be
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HTTP Method

Action

Examples

GET

GET

POST

PUT

DELETE

Obtain
source
Obtain
source
Create a new resource

information about a re-

information about a re-

Update a resource

Delete a resource

http://example.com/api/orders (retrieve order lisf
http://example.com/api/orders/123 (retrieve orde

http://example.com/api/orders (create a new or
data provided with the request)
http://example.com/api/orders/123 (update ord
from data provided with the request)
http://example.com/api/orders/123 (delete order

affected by the different request methods.

Let’s say we want to write a To Do List application and we want to design a web service
for it. The first thing to do is to decide what is the root URL to access this service. For
example, we could expose this service as:

http://[hostname]/todo/api/v1.0/

Here I have decided to include the name of the application and the version of the API in
the URL. Including the application name in the URL is useful to provide a namespace that
separates this service from others that can be running on the same system. Including the
version in the URL can help with making updates in the future, since new and potentially
incompatible functions can be added under a new version, without affecting applications
that rely on the older functions.

The next step is to select the resources that will be exposed by this service. This is an
extremely simple application, we only have tasks, so our only resource will be the tasks in
our to do list.

Our tasks resource will use HT'TP methods as follows:

HTTP Method | URI Action

GET http://[hostname]/todo/api/v1.0/tagkRetrieve list of tasks
GET http://[hostname|/todo/api/v1.0/taskRdtrskvdd] task

POST http://[hostname]/todo/api/v1.0/task€reate a new task

PUT http://[hostname]/todo/api/v1.0/taskkjtlele al) existing task
DELETE http://[hostname]/todo/api/v1.0/taskB)dtetsk sidhsk

We can define a task as having the following fields:

e id: unique identifier for tasks. Numeric type.

e title: short task description. String type.
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e description: long task description. Text type.
e done: task completion state. Boolean type.

And with this we are basically done with the design part of our web service. All that is
left is to implement it! (Note that in this lecture we will only discuss implementations of
the GET requests.)

8.2.4 A brief introduction to the Flask microframework

If you read my Flask Mega-Tutorial series you know that Flask is a simple, yet very powerful
Python web framework. Before we delve into the specifics of web services let’s review how
a regular Flask web application is structured.

You should obviously start by installing Flask. .... Great!

Now that we have Flask installed let’s create a simple web application, which we will put
in a file called app.py:

#!flask /bin/python

from flask import Flask

app = Flask(_-_name__)

@app.route (/)
def index():
return ”Hello, World!”

if __name__ — ’__main__":

app.run (debug=True)

To run this application we have to execute app.py:

$ chmod a+x app.py

$ ./app.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader

And now you can launch your web browser and type

http://localhost:5000

to see this tiny application in action. Simple, right? Now we will convert this app into our
RESTful service!
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8.2.5 Implementing RESTful services in Python and Flask

Building web services with Flask is surprisingly simple. There are a couple of Flask exten-
sions that help with building RESTful services with Flask, but the task is so simple that
in my opinion there is no need to use an extension.

The clients of our web service will be asking the service to add, remove and modify tasks,
so clearly we need to have a way to store tasks. The obvious way to do that is to build a
small database, but because databases are not the topic of this lecture we are going to take
a much simpler approach. In place of a database we will store our task list in a memory
structure. This will only work when the web server that runs our application is single
process and single threaded. This is okay for Flask’s own development web server. It is not
okay to use this technique on a production web server, for that a proper database setup
must be used.

Using the base Flask application we are now ready to implement the first entry point of
our web service:

#!flask /bin/python

from flask import Flask, jsonify

app = Flask(-_name__)

tasks = |

{
id s 1,
"title ’: u’Buy groceries 7,
"description ’: u’Milk, Cheese, Pizza, Fruit, Tylenol’,
"done ’: False

s

{
id 7 2,
"title ’: u’Learn Python’,
"description ’: u’Need to find a good Python tutorial on the web’,
"done ’: False

}

]

@app.route (’/todo/api/v1.0/tasks’, methods=["GET’])
def get_tasks():
return jsonify ({’tasks ’: tasks})

if __name__ — ’__main__":

app.run(debug=True)

As you can see, not much has changed. We created a memory database of tasks, which is
nothing more than a plain and simple array of dictionaries. Each entry in the array has
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the fields that we defined above for our tasks.

Instead of the index entry point we now have a get_tasks function that is associated with
the /todo/api/v1.0/tasks URI, and only for the GET HTTP method.

The response of this function is not text, we are now replying with JSON data, which
Flask’s jsonify function generates for us from our data structure.

Using a web browser to test a web service isn’t the best idea since web browsers cannot
easily generate all types of HT'TP requests. Instead, we will use curl. If you don’t have
curl installed, go ahead and install it now.

Start the web service in the same way we started the sample application, by running
app.py. Then open a new console window and run the following command:

$ curl —i http://localhost:5000/todo/api/v1.0/tasks
HITP/1.0 200 OK

Content—Type: application/json

Content—Length: 294

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 04:53:53 GMT

{
7 tasks”: |
{
7description”: ”Milk, Cheese, Pizza, Fruit, Tylenol”,
?done”: false ,
7id”: 1,
"title”: ”"Buy groceries”
}’
{
”description”: "Need to find a good Python tutorial on the web”,
?done”: false ,
7id”: 2,
"title”: ”Learn Python”
}
J
}

We just have invoked a function in our RESTful service!
Now let’s write the second version of the GET method for our tasks resource. If you look
at the table above this will be the one that is used to return the data of a single task:

from flask import abort
@app.route (’/todo/api/v1.0/tasks/<int:task_id >’, methods=["GET’])
def get_task(task_id):

task = filter (lambda t: t[’id’] = task_id, tasks)
if len(task) = 0:
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abort (404)
return jsonify ({ task ’: task[0]})

This second function is a little bit more interesting. Here we get the id of the task in
the URL, and Flask translates it into the task_id argument that we receive in the func-
tion.

With this argument we search our tasks array. If the id that we were given does not exist
in our database then we return the familiar error code 404, which according to the HTTP
specification means ” Resource Not Found”, which is exactly our case.

If we find the task then we just package it as JSON with jsonify and send it as a response,
just like we did before for the entire collection.

Here is how this function looks when invoked from curl:

$ curl —i http://localhost:5000/todo/api/v1.0/tasks/2
HTTP/1.0 200 OK

Content—Type: application/json

Content—Length: 151

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:21:50 GMT

{
Vtask”: {
”description”: ”"Need to find a good Python tutorial on the web”,
?done”: false ,
7id”: 2,
”title”: ”Learn Python”
}
}

$ curl —i http://localhost:5000/todo/api/v1.0/tasks/3
HTTP/1.0 404 NOT FOUND

Content—Type: text/html

Content—Length: 238

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:21:52 GMT

<!DOCTYPE HIML PUBLIC ”—//W3C//DID HIML 3.2 Final//EN’>

<title >404 Not Found</title >

<h1>Not Found</hl>

<p>The requested URL was not found on the server.</p><p>If you entered
the URL manually please check your spelling and try again.</p>

When we ask for resource id #2 we get it, but when we ask for #3 we get back the 404
error. The odd thing about the error is that it came back with an HTML message instead
of JSON, because that is how Flask generates the 404 response by default. Since this is a
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web service client applications will expect that we always respond with JSON, so we need
to improve our 404 error handler:

from flask import make_response

@app. errorhandler (404)
def not_found(error):

return make_response(jsonify ({’error ’: ’'Not found’}), 404)
And we get a much more API friendly error response:

$ curl —i http://localhost:5000/todo/api/v1.0/tasks/3
HTTP/1.0 404 NOT FOUND

Content—Type: application/json

Content—Length: 26

Server: Werkzeug/0.8.3 Python/2.7.3

Date: Mon, 20 May 2013 05:36:54 GMT

?error”: ”"Not found”
Done.

For this lecture I can again recommend a number of online tutorials:
e http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
e http://rest.elkstein.org
e http://atbrox.com/2010/02/08/parallel-machine-learning-for-hadoopmapreduce-a-python-
e https://github.com/elsevierlabs/logistic-regression-sgd-mapreduce

For a more formal intro to Map Reduce see (Chu et al., 2007).

8.3 Assignment

Please finish the following assignments:

e Implement linear regression using MR by following http://nerdslearning.wordpress.
com/2012/12/04/building-linear-regression-with-mapreduce-on-hadoop/. How-
ever, make sure to implement things in Python / MongoDB.

e In the lecture we have “implemented” the two GET calls to the REST API described
in Table 8.2.3. Implement the remaining calls yourself.
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Chapter 9

Lecture 9: Introduction to
streaming or online data
analysis

We have covered quite a bit by now, but we have not really explicitly dealt with the fact
that on the Web data often comes in continuously instead of in batches as most people are
used to. Thus, often we do not “have” a dataset that we can use for analysis, but rather
we observe things happening all the time. In this lecture we will make a start with what
is called streaming or online analysis: methods to deal with true data-streams. Note in
advance that I think that the jargon is a bit inconsistent here and there, and I will use
the words streaming, online, or in summation form in quite a sloppy fashion. In Computer
Science explicit definitions exist, as is true in statistics (but these differ...). This lecture
however intends to give you a gist of the thing.

This lecture should teach you:
e What online / streaming analysis is, and why its useful.
e Which tools you can use for streaming Al solutions
e How to fit / estimate some standard learning algorithms in data streams

e Reason about the computational and space complexities of streaming algorithms
(although not very formally)
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9.1 Online / Streaming Analysis, a brief intro

Before we start we need some idea of what online (or streaming) analysis is. So, here we
are:

“Online estimation algorithms estimate the parameters of a model when new data is avail-
able during the operation of the model. In contrast, if you first collect all the input/output
data and then estimate the model parameters, you perform offline estimation. Parame-
ter values estimated using online estimation can vary with time, but parameters estimated
using offline estimation do not.”

This definition might not be super intuitive, and might not always be the way in which
the term(s) are actually used. So let me give a slightly more informal description with a
simple counting example to get us up to speed with what we are looking at.

Suppose we have datapoints z1,...,z; arriving one by one in a data stream of length T
(T'> 0,t <T). Here with data stream we intend to say that we observe the datapoints one
by one, that T is possibly very very large, and that it — for all practical purposes — is never
finished. Thus, the data keeps coming in, and there is no one point at which we stop to
analyze it. We just need to deal with the fact that there is more and more coming.

How do we do this? Well, one of the options to deal with data streams is to simply add
more computational power. Algorithms could be programmed such that the analyses run si-
multaneously on multiple cores, known as parallelizing. Therefore, parallelizing algorithms
can greatly reduce computation time. Map/Reduce, which we discussed in the previous
lecture, provides a method to efficiently parallelize computations. However, the problem
of how to deal with additional data entering actually remains.

Another option is to only take the most recent part of the data into account. This is
known colloquially as a sliding window approach. Sliding window methods take only the
most recent n data points into account for fitting statistical models. Using a sliding window
reduces the burden of the computer memory since it is fixed to the computation required
to analyze the n data points regardless of the actual length of the stream. When new
data enter, the window shifts, excluding the oldest data points. In this manner only
a limited amount of memory is required to conduct the analyses. An advantage of the
sliding window approach is that the researcher can, in advance, determine the amount of
computational resources since she herself determines the size of the window. This method
however has disadvantages as well; 1) all information of the data previous to the window
is forgotten, which is especially problematic when modeling rare events, and 2) a sliding
window approach needs domain experience to determine how large the window should be
for the current application.

Finally, we can resort to online learning (which is often used in combination with the
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first option). This means that instead of storing all (or a part of) data points, the data
is summarized into a limited set in parameters which take all relevant information of
previous data points into account. Contrary to a sliding windows approach, online learning
algorithms estimate parameters based on all data available in the stream. As you might
have noticed by the title of this lecture, we focus on this latter one.

9.1.1 A pet example of online learning

To get a bit of feel for this idea of online (or streaming) learning, consider one of the most
basic operations on data we could think of: summing. Thus, we are interested in the sum
S(t) of all datapoints x1, ..., 2, and nothing else.

How do we compute this? Basically there are two versions:

S(t) = Z x;
i=1

or

S(t) = S(t —1) +

The first version has the advantage that you can find a sum at each t' < ¢ (obviously
you cannot find a sum of objects you have not yet observed). However, it has the (large)
drawback that each time you want to know S(¢) you will be iterating through your whole
dataset. The second approach will only tell you the sum at ¢, but comes with the (sometimes
huge) advantage that S(t) is available directly, in memory (note that you would store
Z1,...,T in computer memory for version one, and only S(t — 1) for version 2).

Version one of our sum will grow increasingly complex as t increases. It will take up
more and more memory, and the time to compute the sum will become longer and longer.
However, version two of our summing algorithm has a fixed usage of memory (one scalar),
and a fixed update time.

There are pro’s and con’s of each approach. And, to be honest the example is a bit too
simple: already the Version one algorithm requires only a single pass through the data, and
that is often not too hard (and we can use MR for this!). Also, version one is already in
summation form, and thus it is easy to see how we mover from version 1 to 2. However, once
we need multiple iterations through a dataset to obtain our estimates, or have estimation
methods which are not in summation form, finding streaming (or online, or row-by-row)
methods is not always easy.
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9.1.2 Tools for online or streaming analysis

Before we dig into the streaming computation of some basic statistics and some well-known
machine learning models, we briefly look at the existing software packages for streaming
analysis:

e Twitter’s Storm: At some point Twitter open-sources their platform for quick pro-
cessing. It can be found here: https://storm.apache.org, and you can use all
kinds of programming languages to talk to it. Apache Storm is a free and open
source distributed realtime computation system. Storm makes it easy to reliably
process unbounded streams of data, doing for realtime processing what Hadoop did
for batch processing.

e RStorm http://cran.r-project.org/package=RStorm a package to model Storm
streams in [R], useful for debugging and development.

e Initially originating from Yahoo, there is also S4: “a general-purpose, distributed,
scalable, fault-tolerant, pluggable platform that allows programmers to easily develop
applications for processing continuous unbounded streams of data.” See http://
incubator.apache.org/s4/.

e There is also Apache Spark: which “is a fast and general engine for large-scale data
processing.” See https://spark.apache.org.

e And many many more. ..

We will not be covering a specific software package, we will primarily focus on the under-
lying principles of streaming analysis and on some of the algorithms.

9.2 Online or streaming algorithms

In this section we will discuss a number of online algorithms. In a general sense we are
looking for “summation form” descriptions of standard estimators and models. So, given
that our task is to estimate 6 (possibly a vector), we are restricting ourselves to algorithms
that can be noted down as follows:

9t+1 = f(@t,xt) (91)

or more concise: 0 := f(0,x).
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9.2.1 Sample mean

Suppose we want to estimate the sample mean of z1,...,x4. Its standard formulation
would be # = S"i_, x;/t. Tt is trivial to write X in the form of Equation 9.1:

SZZS—F(I}t
n:=n+1

where § = {S,n}, and z = S/n.

With this, it might seem that implementations of the streaming estimation of a mean are
trivial. However, the term .S; is ever growing in ¢ and might “explode”. This might lead to
numerical problems if ¢ — co. Furthermore, in the above specification Z is not immediately
available.

Alternatively one could specify:

=T+ (xy—z)/(n+1)
+1

3 8

where 0 = {z,n}. This latter method is more stable numerically

9.2.2 Sample Variance

Now, let’s estimate the sample variance o2 = ﬁ Zle(xi — 7)2, where 7 is the sample
mean. Non-streaming computation of o is often done using the so called two-pass algo-
rithm: first, the sample mean is computed and second the sample variance is computed.
However, using the sum of squares we can compute a fully streaming sample variance:

n:=n;+1
SZ:S+$t
SS =SS + a7

where § = {SS,S,n} and the sample variance at any point ¢ is given by 0?7 = 1/(n(n —
1))(nSS — S?).

Similar to the sample mean case, the above method of computing the sample variance
quickly suffers from numerical problems as ¢ — oo. Numerical instability is especially
problematic when when o2 << . Alternatively we can compute the streaming variance
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using:

n:=n+1
=xi+ (¢ —2)/(n+ 1)
=85+ (2 — ) (2 — T)

I

nn

where 6 = {S,%,n} and which conveniently gives both Z and 02 = S/(n — 1) in a single
stream and is more stable numerically.

We will work out the streaming computation of the sample covariance during the lec-
ture.

9.2.3 Linear regression

After estimating means and variances, a next logical step is to estimate a simple linear
regression model (LMs). Here we regard a single event z; a vector containing components
(Yt, 1ty - .., xke) where y; is the state of the dependent variable at time ¢ which is to
be predicted by k independent variables (or features) xy,...,xg:. In the non-streaming
analysis of the linear regression model the observations y; . are predicted as a linear
function of the independent variables which, discarding ¢ since we are analysing the full data
set, can be written as y ~ N (8o + B1z1 + - - - + Bray, 02..). The parameters of primary
interest are the regression weights 31 ;. Traditionally these are obtained using the Normal
Equations that we discussed previously:

f=X"xX)"'x"y (9.2)

where X is a ¢ x k£ matrix with all observations on all explanatory variables k, and y
is a vector of length ¢ with all the observations on the response variable. This solution
minimises the squared-error loss function. We can write this in the form of Equation 77
by stating

A=A+ xx!
b:=b+ x4y,

where 6 = {A,b}, and § = A~1b.
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9.2.4 And a few more...

Now that we have covered some of the real basics, here are a number of descriptions of
other types of models and their implementations (note that these are based on (Chu et al.,
2007)):

Locally Weighted linear regression: LWLR is solved by finding the solution of the
normal equations A6 = b, where

t
A= Z w;(zizl)
1=1

¢
b= Z wi(2:Y;)
i=1
Note that this is just linear regression as discussed above if w; = 1.

Naive Bayes: In NB (discussed in lecture 1), we have to estimate P(x; = k|y = 1),
P(xzj = k|ly = 0), and P(y) from the training data. In order to do so, we need to sum
over x; = k for each y label in the training data to calculate P(z|y). We can do this
using a number of sums of indicator functions:

Oj1 =0 +1z; =kly=1
Ojo =00+ 1laj =kly=0
=01+ 1ly=1
Op:=0p+ 1ly=0

(Where I leave it up to you to work out the exact details).

Principal component Analysis (PCA): PCA computes the principle eigenvectors of
the covariance matrix ¥ = % (Zle l’ﬂ;’?) — up®. Clearly, the first term is already

in summation form. The mean vector pu can also be computed in summation form:
_ 15t .
B= g i T

You will be able to find many more “streaming” or “online” or “in summation form”
algorithms for standard AI techniques (often approximations). However, I think you get
the idea. Formally, we are looking for a number of data sufficient statistics 8, and some

update rule of these to estimate our models.

9.3

Complexity considerations

It is important to understand why streaming / online analysis is more feasible computa-
tionally (despite being often less straightforward to compute or approximate). There are
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really two conceptual things that change:

e Memory: In non-streaming methods we often save all observations &1, ...,Z;. Thus,
as t grows, the memory usage grows. In steaming methods we only store 8, with
dimension k, and we assume k << t.

e Computation: The real crux in computation is that classical methods revisit 21, . .., 7}
if estimates are needed at t’. If this is often, then the datapoints will be visited
many-many times to compute the quantities of interest. With online learning, the
datapoints are only visited once.

You can find more info on online learning and streaming estimation here (Opper and
Winther, 1998; Alpcan and Bauckhage, 2009; Bottou, 1998; Gaber et al., 2005), and in
many other places. ..

9.4 Assignment

Since there are no more “tutorials” scheduled at this point, the following assignments are
basically voluntary. However, I would suggest you give them a try.

e [mplement a streaming computation of a variance in Python.
e Implement a streaming linear regression in Python.

e Compare, when you would like to make a prediction at each point in time ¢, the
difference in computational and memory between streaming and non-streaming linear
regression.

110



Chapter 10

Lecture 10: Stochastic Gradient
Descent (SGD)

In the previous lecture we discussed streaming / online estimation and analysis meth-
ods. In this lecture we will discuss stochastic gradient descent as a general online es-
timation method, and look at two instances (logistic regression and regularized logistic
regression).

This lecture should teach you:
e What stochastic gradient descent (SGD) is, and why its useful for online estimation.
e How to use SGD to fit logistic regression at a large scale.

e How to use SGD to fit generalized logistic regression.

10.1 (Stochastic) Gradient Descent

Both statistical estimation and machine learning often consider the problem of minimizing
an objective function that has the form of a sum:

where the parameter w is to be estimated and where typically each summand function Q;()
is associated with the i-th observation in the data set (used for training).
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In classical statistics, sum-minimization problems arise in least squares and in maximum-
likelihood estimation (for independent observations). The general class of estimators that
arise as minimizers of sums are called M-estimators.

When used to minimize the above function, a standard (or ”batch”) gradient descent
method would perform the following iterations :

w:=w-—aVQ(w) =w — aZVQi(w)
i=1

where « is a step size (or learning rate), and VQ(w) is the gradient of the objective
function. Basically we update the parameters w by making a step “in the direction of the
gradient” of the objective function. The term o) * ; VQ;(w) is a summation over all data
points, and is (sometimes) expensive to carry out. Especially in data streams, this might
be infeasible.

10.1.1 Online Gradient Descent

In stochastic (or ”on-line”) gradient descent, the true gradient of Q(w) is approximated by
a gradient at a single example:

w:=w —aVQ;(w)

As the algorithm sweeps through the training set, or data stream, it performs the above
update for each training example. On a static dataset one can make several passes over the
training set until the algorithm converges. In a stream we assume the data to be random
draws of the underlying process and thus we can motivate convergence (for stationary
processes) in a similar fashion. Typical implementations may use an adaptive learning rate
so that the algorithm converges.

In pseudocode, stochastic gradient descent can be presented as follows:

Choose an initial vector of parameters w and learning rate $\alpha$.
Randomly shuffle examples in the training set.
Repeat until an approximate minimum is obtained:
For i=1, 2, ..., n, do:
w := w — alpha nabla Q_i(w).

A compromise between the two forms called ”mini-batches” computes the gradient against
more than one training examples at each step. This can perform significantly better than
true stochastic gradient descent because the code can make use of vectorization libraries
rather than computing each step separately. It may also result in smoother convergence,
as the gradient computed at each step uses more training examples.
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The convergence of stochastic gradient descent has been analyzed using the theories of
convex minimization and of stochastic approximation. When the learning rates a decrease
with an appropriate rate, and subject to relatively mild assumptions, stochastic gradient
descent converges almost surely to a global minimum when the objective function is convex
or pseudoconvex, and otherwise converges almost surely to a local minimum."

10.1.2 An example of SGD: (simple) Linear regression
Let’s suppose we want to fit a straight line y = w; +wax to a training set of two-dimensional
points (x1,y1),- ., (Tn, yn) using least squares.

The objective function to be minimized is:

n

Q(w) = ZQi(w) = Z (w1 + waz; — y;)°.
=1

=1

The last line in the above pseudocode for this specific problem will become:

[wl} o [wl] Ca [ 2(wy + wex; — y;) }
wa| T |we 2z (w1 + wax; —yi)|
10.2 SGD for Logistic Regression

One fairly simple way (and extremely scalable way) to implement logistic regression is
using stochastic gradient descent (for which actually no closed-form solution exists, unlike
the linear regression example above).

We estimate the probability p that an example ¥ = (z1, ..., x4) in the log-odds form (using
a logit link):

log 1 fp = a+Zdﬁjxj
j=1

We can merge the intercept «, into the [’s by including a feature xy with only 1’s.
Then:

. exp gz
P=7 +expTx

!Learning rates are often assumed to satisfy the following conditions: Zle a; = 00, and E?:l af < oco.
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It’s convenient to consider examples of the form (Z,y) where y = 0 or y = 1. The log of
the conditional likelihood is

L(Z,y) = logp
if y=1 and
L(Z,y) = log(1 - p)

if y = 0, where p is computed as above. With a little calculus you can show that for a
positive example,

D gt
oB; pOB;
and for a negative example,
0 1 0
7 LEy)=—(—5>p
95, (Z,9) 1_p( 95, )
and that 5
a7 P =0 —p)z;
and putting this together we get that if y =1
0
—L(Z,y) = (1 —p)x;
and if y = 0 then
0

87,8‘7‘5(1.7 y) = —px;

so in either case 9
Tﬁjﬁ(fﬁa y) = (y —p)z; (10.1)

So an update to the §’s that would improve most would be along the gradient—i.e., for
some small step size A, let

Bj = Bj + My — p)i
Notice that if ; = 0 then j3; is unchanged.

So this leads to this streaming algorithm, which is very fast (assuming you have enough
memory to hash all the parameter values).
Initialize a hashtable B
For i=1, ..., )t
For each non—zero feature:
If feature j is not in B, set B[j]=0.
Set B[j] = B[j] + lambda (y-p) x_i
Output the parameters B.
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10.3 Efficient regularized logistic regression using SGD

Logistic regression tends to overfit when there are many rare features. One fix is to penalize
large values of 3, by optimizing, instead of £, some function such as £ —p Z?Zl sz Here p
controls how much weight to give to the penalty term. The update for 3; becomes

Bj = Bj + M(y — p)zi — 2p0;)

or equivalently
Bj = Bj + Ay — p)zi — A2uB;

Experimentally this greatly improves overfitting - but unfortunately, this makes the com-
putation more expensive, because now every (3; needs to be updated, not only the ones
that are non-zero. However, it can already be done in a data stream.

One trick to making this even more efficient is to break the update into two parts. One is
the usual update of adding A(y — p)z;. Let’s call this the “ £” part of the update. The
second is the “regularization part” of the update, which is to replace 8 by

Bj = Bj —A2uB; = Bj - (1 = 2Ap)
So we could perform our update of 3; as follows:
o Set Bj =55 - (1 —2\p)
o If z; #0, set B = B + Ay — p)a;

Following this up, we note that we can perform m successive “regularization” updates by
letting B; = Bj - (1 — 2Au)™. The basic idea of the new algorithm is to not perform
regularization updates for zero-valued z;’s, but instead to simply keep track of how many
such updates would need to be performed to update 3;, and perform them only when we
would normally perform “L” updates (or when we output the parameters at the end of the
day). This latter version is called “Lazy sparse stochastic gradient descent for regularized
logistic regression”.

For more info see also http://cilvr.cs.nyu.edu/diglib/1sml/bottou-sgd-tricks-2012.
pdf, or (amongst others Gardner, 1984; Zinkevich et al., 2010; Opper and Winther, 1998;
Poggio et al., 2011).

10.4 Assignment

Since there are no more “tutorials” scheduled at this point, the following assignments are
basically voluntary. However, I would suggest you give them a try.
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Implement linear regression using stochastic gradient descent in Python. Compare
it to the online solution we discussed in the previous lecture.

Implement logistic regression in Python
Implement regularized logistic regression in Python.

Plot the convergence of the parameters g for logistic regression and regularized logistic
regression as a function of time ¢ for a dataset you simulate yourself.
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Chapter 11

Lecture 11: Bandit problems

In this lecture we will discuss reinforcement learning, and more prominently bandit prob-
lems, since these arise often on the Web. We will briefly introduce the topic, and then
examine “policies” to solve the problem. At the end you should be:

e Able to explain the difference between supervised and unsupervised learning

Understand the formulation of Bandit problems and their omnipresence

Understand the exploration-exploitation trade-off

Discuss what it means for a policy to “solve” the bandit problem

Be able to implement different solutions to bandit problems

Understand Thompson Sampling

11.1 Reinforcement Learning

Reinforcement learning is an area of machine learning inspired by behaviorist psychology,
concerned with how software agents ought to take actions in an environment so as to max-
imize some notion of cumulative reward. The problem, due to its generality, is studied
in many other disciplines, such as game theory, control theory, operations research, infor-
mation theory, simulation-based optimization, statistics, and genetic algorithms. In the
operations research and control literature, the field where reinforcement learning methods
are studied is called approximate dynamic programming. The problem has been studied
in the theory of optimal control, though most studies there are concerned with existence of
optimal solutions and their characterization, and not with the learning or approximation
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aspects. In economics and game theory, reinforcement learning may be used to explain
how equilibrium may arise under bounded rationality.

In machine learning, the environment is typically formulated as a Markov decision pro-
cess (MDP) as many reinforcement learning algorithms for this context utilize dynamic
programming techniques. The main difference between the classical techniques and rein-
forcement learning algorithms is that the latter do not need knowledge about the MDP
and they target large MDPs where exact methods become infeasible.

Reinforcement learning differs from standard supervised learning in that correct input/out-
put pairs are never presented, nor sub-optimal actions explicitly corrected. Further, there
is a focus on on-line performance, which involves finding a balance between exploration
(of uncharted territory) and exploitation (of current knowledge). The exploration vs. ex-
ploitation trade-off in reinforcement learning has been most thoroughly studied through
the multi-armed bandit problem and in finite MDPs.

The basic reinforcement learning model consists of:
e a set of environment states S;

e a set of actions A;

rules of transitioning between states;

rules that determine the scalar immediate reward r of a transition; and

rules that describe what the agent observes.

The rules are often stochastic. The observation typically involves the scalar immediate
reward associated with the last transition. In many works, the agent is also assumed to
observe the current environmental state, in which case we talk about full observability,
whereas in the opposing case we talk about partial observability. Sometimes the set of
actions available to the agent is restricted (e.g., you cannot spend more money than what
yOu possess).

A reinforcement learning agent interacts with its environment in discrete time steps. At
each time ¢, the agent receives an observation o;, which typically includes the reward r;. It
then chooses an action a; from the set of actions available, which is subsequently sent to the
environment. The environment moves to a new state s;41 and the reward r;y; associated
with the transition (s, at, s¢+1) is determined. The goal of a reinforcement learning agent
is to collect as much reward as possible. The agent can choose any action as a function of
the history and it can even randomize its action selection.

When the agent’s performance is compared to that of an agent which acts optimally from
the beginning, the difference in performance gives rise to the notion of regret.
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We will not dig into reinforcement learning as a topic of its own, but you should obviously
know it exists, and has applications on the Web. We refer to (Sutton and Barto 1998) for
a good introduction. In this course we will now move on and discuss multi-armed bandit
problems. We will formalize “policies” and “regret” in this context. Note that the bandit
literature is large, and that (again), we are only scratching the surface here. ...

11.2 Bandit problems

The multi-armed bandit problem derives its name from one of the classical ways of setting
up the problem: A one-armed bandit is a slot machine with one arm to pull. In the multi-
armed bandit we assume a player faces multiple arms (or slot machines), which might
have differing pay-offs. However, the pay-offs are unknown to the player and have to be
“learned” as she goes along. The question then becomes what strategy (or often “policy”)
should a player follow to maximize her profits from playing the machines.

Formally, bandit problems can be described as follows: at each time t = 1,...,T, we have
a set of possible actions A. After choosing a; € A we observe reward ;. The aim is to find
a policy P to select actions a such that the cumulative reward R, = Ethl r¢ is as large
as possible. If we denote that actions a =1,...,a = K for the k = 1,...,k = K different
arms then we can denote puy, the expected reward of arm k. The arm (or action) k has an
unknown reward distribution that the player needs to learn.

11.2.1 Exploration vs. Exploitation

Obviously, if uy is known with perfect certainty, then the multi-armed bandit problem is
not at all a problem: you just play the action k with the highest expectation. However,
in practice you often don’t know pj with full certainty: we have to estimate pj using
the rewards obtain thus far. Because of this uncertainty the player now has conflicting
interests: the player might play the action that she believes has the highest pay-off, but
is uncertain about. However, she might also choose to try the arms which she is more
unsure about, but which potentially have a higher reward. This is called the exploration-
exploitation trade-off: on one hand a player wants to explore the different actions to see
what they are worth, but on the other hand the player wants to utilize her knowledge by
playing the action she believes has the highest pay-off.

11.2.2 Strategies or Policies

In the bandit literature researchers examine “Policies”. These are distinct algorithms to
choose actions at ¢t = ¢’ based on the actions and rewards at ¢t < ¢’. A policy might be simple
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(and stupid), and it might involve elaborate models of actions (and possible dependencies
between actions), rewards (with possible effects over time), etc.

In its essence a policy contains 2 parts: (1) the policy specifies a model to summarize or
model the data (ay,...,a,71,...,7) and subsequently (2) the policy consists of a decision
procedure: given the model, what choice does the player make? We will look at a few
policies shortly.

11.2.3 Performance of Policies: Regret

Before we examine different policies it is good to think about the performance of policies:
when is a policy “good”? This is often specified in terms of the total expected regret:

K
Ry = p'T =y wiE[T;(T)]
k=1

where p* is the expected reward of the action with the highest expected reward and
E[T:(T)] denotes the expected number of times that a policy P will select action k. It
is also often denoted (and computed) as:

T
Ry =p*T =Y P(t)

t=1

where P(t) denotes the reward observed at ¢ when using policy P. In empirical simulations
we often repeat a policy multiple times and compute the expectation over simulation runs

of I P(t).

Note that R is a function of T. Also note that when selecting the “best” action, there is
no increase in Ryp: if the best action is selected all the time Rp should converge to 0. If a
wrong action is selected all the time (thus g/ < p*), then the regret increases linearly with
time.

An algorithm is said to “solve” the multi armed bandit problem if it can match the lower
bound Ry = O(log T'). In words: an optimal policy selects the “best” action exponentially
more often than any of the other actions.

11.2.4 Discount

For the analysis of bandit problems we analyze the regret Rp as a function of 7. How-
ever, how do we deal with this as T — oco: we introduce discounts. We thus consider
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T1V1s e« oy TtVes - - - Tt Yet... as our rewards where v denotes how we discount historical or
future rewards.

A very common discount structure is the n-horizon uniform discount where vy = 1,...,v% =
L,y+1 =0,...,%+.. = 0. We will primarily consider this structure (basically giving 0 value
to future rewards). Also common is the geometric discount v = 1, 3, 8%, 83, ....

11.2.5 Why is this problem important?

In case you have not been able to come up with any other application then gambling for
the multi-armed bandit problem, here are a few other cases where the problem arises and
needs attention:

e Advertisement selection online: each add will have a different (but at the start un-
known) pay-off: how do we decide which ads to show?

e News article selection (see above)

e Medication testing: in its simplest case we have two competing pills, both with
uncertain pay-offs. How do we go about to cure as many people as possible?

With some imagination you must be able to come up with a long list of possible applications
of bandit problems (and their extensions — we will cover the “contextual” bandit in the
next lecture).

11.3 Simple Policies

Let’s first look at some simple (but not optimal) policies that are in use for the multi-armed
bandit problem:

e Greedy: Always play the action with the currently highest estimate p (highest ex-
pected reward).

e c-greedy: Play action with the highest expected reward with probability 1 — e, choose

€

a random action with probability € (giving a =) probability for each).

e c-first: Play random action with probability % for t < N. For t > N choose action
with highest expected reward based on the initial trial. This is what we do in clinical
trials.

e Play the Winner: Choose a random action, if it wins play it again, if it doesn’t then
switch (randomly) to one of the others.
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11.4 UCB methods

A well studied and broad class of policies for bandit problems are called Upper Confidence
Bound (or UCB) methods. Here is one version:

“At each timepoint T, select the arm £k with the largest value of By, ,, r defined as:

ngk

1 2logT
By, m = " > reat -
i=1

Note that this will play arms with a high mean reward (the first term), but also those
with high uncertainty (the second term). In this way exploration and exploitation are
balanced. For a number of problems UCB methods are optimal (meaning they obtain the
R7p = O(logT') bound). However, UCB methods are hard to generalize to complex bandit
problems (with e.g. related actions or with a context), and they are sometimes hard to
compute. Hence, despite their theoretical appeal, they are not super frequently used to
solve bandit problems online.

11.5 Thompson Sampling

Thompson sampling is a recently popular policy, that was only proven optimal in 2013.
The basic idea of Thompson sampling is simple and intuitive: one randomly selects an
action a at time ¢ according to its estimated probability of being optimal (e.g., leading to
the highest reward). Thompson sampling is formalized easily within a Bayesian framework
(cf. Scott, 2010). The set of past observations D consists of the actions a(;, 4 and the
rewards 71 ). The rewards are modeled using a parametric likelihood function: Pr(r|a, )
where 0 is a set of parameters. Using Bayes rule it is, in some problems, easy to compute
or sample from Pr(0|D). Given that we can compute Pr(6|D) we can select an action
according to its probability of being optimal:

/]l {E(r\a,&) = sz}xE(r]a’,G) Pr(9|D)do (11.1)

where 1 is the indicator function. In practice it is not necessary to compute the above
integral: it suffices to draw a random sample 6* from the posterior at each round and
select the action with the highest estimated reward given the current draw.

When it is easy to sample from Pr(6|D), Thompson sampling is easy to implement.

A commonly used example of a bandit problem is the K-arm Bernoulli bandit problem,
where 7 € {0, 1}, and the action a is to select an arm k =1,..., K at time ¢. The reward
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of the k-th arm follows a Bernoulli distribution with true mean 6. The implementation of
Thompson sampling using Beta priors for each arm is straightforward: For each arm k one
sets up a Beta-Bernoulli model and at each round one obtains a single draw 6} from each
of the Beta posteriors, plays the arm k= arg max,, 6y, and subsequently uses the observed
reward r; to update the Beta posterior of arm k.

There is a large literature on MAB problems. For an accesible intro see (Berry and Fristedt,
1985). For more recent or detailed work: (see, e.g., Garivier and Cappé, 2011; Press, 2009;
Bubeck et al., 2011; Scott, 2010; Gittins, 1979; Whittle, 1980).

11.6 Assignments

e Implement, in Python, a comparison of the greedy, e-first (with N = 1000, UCB, and
Thompson sampling policies for a K arm bandit problem with continuous rewards.
Compute the regret Ry for each method for ¢t = 1,...,T = 10° and average over 100
simulation runs for each. Describe the outcomes.

e Are your above policies implemented “online”?

e Which quantities do you need for each of the versions?
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Chapter 12

Lecture 12: Contextual Bandit
problems and applications

We have discussed simple bandit problems in the previous lecture, and we discussed some of
the real-world problems that can be described using a bandit formulation. In this lecture
we will dig a bit further into bandit problems and we will consider “contextual bandit
problems”. You wil learn:

e What a contextual bandit problem is.

e How to implement Thompson sampling for a contextual bandit problem (both with
continuous as well as dichotomous rewards)

e To gain intuition into the hierarchical structures that often arise in Contextual Bandit
problems.

e To implement Bootstrap Thompson sampling

12.1 The Contextual Bandit Problem

One of the fundamental underpinnings of the internet is advertising based content. This has
become much more effective due to targeted advertising where ads are specifically matched
to interests. Everyone is familiar with this, because everyone uses search engines and all
search engines try to make money this way. The problem of matching ads to interests is a
natural machine learning problem since there is a lot of data available about “who clicks
on what”. A fundamental problem with this data is that it is not supervisedin particular
a click-or-not on one ad doesnt generally tell you if a different ad would have been clicked
on. This implies we have a fundamental exploration-exploitation problem.
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A standard mathematical setting for this situation is the multi-armed bandit, as we dis-
cussed last lecture. This setting (and its variants) however fail to capture a critical phe-
nomenon: each of these displayed ads are done in the context of a search or other webpage.
To model this, we might think of a different setting where on each round:

e The world announces some context information z (think of this as a high dimensional
vector if that helps).

e A policy chooses arm a from 1 of k actions (i.e. 1 of k ads).

e The world reveals the reward r, of the chosen action (i.e. whether the ad is clicked
on).

Thus, now we suddenly have data z1,...,z¢,a1,...,a0¢,71,...,7¢ asopposed to ay, ..., ¢, 71, ..., 7
as we had in the previous lecture. This is often quite realistic: we often know something
about the environment or context before making a decision which impact the expected
reward of the actions. We now thus need to learn a model that does not only describe the
relationship between actions and rewards, but this time we need a model that also models
(possible) interactions with the context .

One naive way to do this is to just increase the number of actions as a factor of the
context: if the context x is discrete valued, we could denote new actions ax and just use
the methods we have developed before. However, with a very large set of possible context
this is probably not feasible. Luckily, Thompson sampling generalizes quite well: all we
need to do is setup a Bayesian model relating the actions, context, and rewards, and sample
from its posterior to decide on the action to select. Below are some examples.

12.2 Thompson sampling for a simple contextual bandit prob-
lem

Thompson sampling “requires” a Bayesian model. Here are two versions for both continu-
ous and discrete {0, 1} rewards.

12.2.1 Continuous rewards

Consider a standard linear regression problem, in which for ¢ = 1,...,n we specify the
conditional distribution of y; given a k x 1 predictor vector x;:

Yi = XiT,@ + €,

where 3 is a k x 1 vector, and the ¢; are independent and identical normally distributed
random variables: ¢; ~ N(0,0?). We can now treat the y;’s as the rewards r;, and within
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x; we encode both the effect of the actions a as well as the context x on the rewards that
we expect. We continue with the notation y;, x;.

As we have seen, the likelihood of this model is:

o2

p(yrx,ﬂ,o2>o<<02>”/2exp( ! (y—Xﬂ)T(y—Xﬂ)>-

which is maximized by:
B=X"X)"'XTy

T

where X is the n x k design matrix, each row of which is a predictor vector x; .
This is a frequentist approach, and it assumes that there are enough measurements to say
something meaningful about 8. In the Bayesian approach, the data are supplemented with
additional information in the form of a prior probability distribution. The prior belief about
the parameters is combined with the data’s likelihood function according to Bayes theorem
to yield the posterior belief about the parameters 8 and o. The prior can take different
functional forms depending on the domain and the information that is available a priori.
Here we consider the a conjugate prior for the Bayesian linear regression model.

A prior p(B3,0?) is conjugate to this likelihood function if it has the same functional form
with respect to B and o. Since the log-likelihood is quadratic in 3, the log-likelihood is
re-written such that the likelihood becomes normal in (3 — 3). Write

(y —X8)T(y - XB) = (y - XB)"(y — XB)
+(B8-B)TX"X)(B-B).

The likelihood is now re-written as

— vs® —(n—v
p(y|X, B,0%) x (62) 7/ exp <—22> (02)~(n=v)/2

« exp (-2;@ CBXTX)(B - B)) ,

where vs? = (y — XB)T(y - XB), and v = n — k, where k is the number of regression
coefficients. This suggests a form for the prior:

p(B,0%) = p(c®)p(Blo?)

2
where p(c?) is an inverse-gamma distribution: p(c?) o (¢2)~(“0/2+1) exp (—2(;920). This is

the density of an Inv-Gamma(ag, by) distribution with ag = vy/2 and by = %Uo&’% with vg
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and s as the prior values of v and s2, respectively. The conditional prior density p(3|o?)
is a normal distribution,

p(B19%) o (0%) 412 exp (5158 = o Aol — ) )

In the notation of the normal distribution, the conditional prior distribution is N/ (uo, UQAJ 1) .
With the prior now specified, the posterior distribution can be expressed as

p(B,0°ly, X)  p(y|X, B,0%)p(Blo?)p(c?)

x (%)™ exp (—2;@ - XB) (y - Xﬂ))
< ()2 exp (= (8= o) Aol — i) ) x (0% exp (1),

With some re-arrangement, the posterior can be re-written so that the posterior mean g,
of the parameter vector 3 can be expressed in terms of the least squares estimator 3 and

the prior mean p, with the strength of the prior indicated by the prior precision matrix
Ao

t, = (XX + Ag) M (XTXB + Aop)

The posterior can be expressed as a normal distribution times an inverse-gamma distribu-
tion:

P87y X) o (0) M2 exp (=515 (8 — ) (XX + 80)(B — ) )

X (02)7(”4“10)/271 exp (—bo ¥y = oy (XTX A+ Ag)py, + H0TA0N0>
202 '

Therefore the posterior distribution can be parametrized as follows:

p(B, 0%y, X) o p(Blo?, y, X)p(c?|y, X),

where the two factors correspond to the densities of N/ (un, o?A;, 1), and Inv-Gamma (ay, by,)
distributions, with the parameters of these given by

A, = (XTX + Ay),
By = (An) T HXTXB + Aopg)

n
an:a0+§

1
b = bo + §(yTy + g Aopg — o Antty,).
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After setting up this Bayesian Linear model all we need to do at each round is to take a
draw from the posterior 5 and select the action a which maximizes r given x.

12.2.2 Discrete rewards

For discrete rewards r € {0, 1} the above model does not work and we need a Bayesian
model with some link function (e.g. logistic regression, probit regression, etc.). Here we
choose a probit model.

Probit models

Suppose response variable Y is binary, that is it can have only two possible outcomes which
we will denote as 1 and 0. For example Y may represent presence/absence of a certain
condition, success/failure of some device, answer yes/no on a survey, etc. We also have
a vector of regressors X, which are assumed to influence the outcome Y. Specifically, we
assume that the model takes the form

Pr(Y = 1| X) = ®(X'8),

where @ is the Cumulative Distribution Function (CDF) of the standard normal distribu-
tion. The parameters 3 are typically estimated by maximum likelihood.

It is possible to motivate the probit model as a latent variable model. Suppose there exists
an auxiliary random variable

Y*=X'B+e¢,

where € N(0,1). Then Y can be viewed as an indicator for whether this latent variable is
positive:

Y{l fY* >0 ie. —e< X'B,

0 otherwise.

The use of the standard normal distribution causes no loss of generality compared with
using an arbitrary mean and standard deviation because adding a fixed amount to the mean
can be compensated by subtracting the same amount from the intercept, and multiplying
the standard deviation by a fixed amount can be compensated by multiplying the weights
by the same amount.
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To see that the two models are equivalent, note that

Pr(Y =1|X)=Pr(Y*>0)=Pr(X'8+¢>0) (12.1)
=Pr(e > —-X'PB) (12.2)
=Pr(e < X'B) (by symmetry of the normal dist) (12.3)
= ®(X'P) (12.4)

Gibbs Sampling

Gibbs sampling of a probit model is possible because regression models typically use normal
prior distributions over the weights, and this distribution is conjugate with the normal
distribution of the errors (and hence of the latent variablesY*). The model can be described
as

B ~ N (bg,By) (12.5)

v xi, B~ N(x.3,1) (12.6)
1 ifyf>0

P = ¢ 12.7

Y {0 otherwise ( )

From this, we can determine the full conditional densities needed:

B=(B,'+X'X)! (12.8
By ~N(@BB;'by+X'y*),B) (12.9
vy =0,%x,8~N(,8,1)yf <0 (12.10

)
)
)
vi lyi =1,%, 8~ N(x;8,1)[y; = 0] (12.11)
The only trickiness is in the last two equations. The notation [yf < 0] is the Iverson
bracket, sometimes written Z(y; < 0) or similar. It indicates that the distribution must
be truncated within the given range, and rescaled appropriately. In this particular case,
a truncated normal distribution arises. Sampling from this distribution depends on how
much is truncated. If a large fraction of the original mass remains, sampling can be easily
done with rejection sampling simply sample a number from the non-truncated distribution,
and reject it if it falls outside the restriction imposed by the truncation. If sampling from
only a small fraction of the original mass, however (e.g. if sampling from one of the tails
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of the normal distribution for example if x/3 is around 3 or more, and a negative sample
is desired), then this will be inefficient and it becomes necessary to fall back on other
sampling algorithms.

One can use draws from the Gibbs sampler to implement Thompson sampling. Note that
this does not scale very well computationally (it is not “online”). However, many standard
implementation of Bayesian Probit regression can be found and used if the problem is not
too large.

12.3 Hierarchical Structures

Already above, for the probit case, computation of the posterior 8 was somewhat annoying
and we resorted to Gibbs Sampling. This obviously does not scale very well. However, the
above two examples were really simple linear models and generalized linear model versions
for the contextual bandit problem. In reality these are often too simple: in many real
problems the data is nested or hierarchical, and we thus need to resort to linear mixed
models or generalized mixed models. For these it might be computationally even harder
to sample from the posterior, and thus to implement Thompson sampling. However, we
should not just ignore the grouping structure. Developing scalable and efficient methods for
Thompson sampling in the cases of hierarchical contexts is an active research field.

12.4 Bootstrap Thompson Sampling

When it is easy to sample from Pr(0|D), Thompson sampling is easy to implement. How-
ever, to be practically feasible for many problems, and thus scalable to large T" or to complex
likelihood functions, Thompson sampling requires computationally efficient sampling from
Pr(6|D). In practice Pr(6|D) might not always be easily available: already in situations in
which a logit or probit model is used to model the expected reward of the actions, Pr(6|D)
is not available in closed form and is then often computed using MCMC methods, which
can be computationally costly. Furthermore, for many likelihood functions it is hard to
update the posterior online (i.e., row-by-row) thus requiring inspection of the full dataset
D at each iteration. Both of these properties make that for a number of applied problems
the scalability of Thompson sampling might be limited. Also, Thompson sampling is a
parametric method, so its performance depends on the accuracy of the model that is used
to compute Pr(r|a,d). Thus, Thompson sampling may not be very robust to common
forms of model misspecification.

A modification of Thompson sampling that we call bootstrap Thompson sampling (BTS)
aims to solve some of these problems. BTS replaces the posterior Pr(6|D) by a bootstrap
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distribution of the point estimate 6. Some bootstrap methods are especially computation-
ally appealing. In particular, bootstrap methods that involve randomly reweighting data
(Rubin, 1981), rather than resampling data, can be conducted online (Lee and Clyde, 2004;
Owen and Eckles, 2012; Oza, 2001). For BTS we use a bootstrap method in which, for each
bootstrap replicate j € {1,...,J}, each observation gets a weight w;; ~ 2 x Bernoulli(1/2).
Following Owen and Eckles (2012, §3.3), we refer to this bootstrap as the double-or-nothing
bootstrap (DoNB) or online half-sampling.*

Statisticians have noted relationships between bootstrap distributions and Bayesian poste-
riors. With a particular weight distribution and nonparametric model of the distribution of
observations, the bootstrap distribution and the posterior coincide (Rubin, 1981). In other
cases, the bootstrap distribution 6 can be used to approximate a posterior (e.g., Efron,
2011; Newton and Raftery, 1994), e.g., as a proposal distribution in importance sampling.
Moreover, sometimes the difference between the bootstrap distribution and the Bayesian
posterior is that the bootstrap distribution is more robust to model misspecification, such
that if they differ substantially the bootstrap distribution may even be preferred (Liu and
Rubin, 1994; Szpiro et al., 2010).

See for more on BTS: (Kaptein and Eckles, 2014). For alternative solutions to continuous
bandit problems see (Kaptein and Tannuzzi, 2014; Agarwal et al., 2011). For optimality
proves on bandits see (Agrawal et al., 1988; Agrawal, 2012, 2014).

12.5 Applications

Please try the following assignment:

e Implement in Python a simulation of a contextual bandit solution to the “web adver-
tisement” problem: suppose the context presents itself as x € {1,...,m} webpages
that a user could visit. Subsequently, you have the choice of 1,..., K actions (or
ads) to serve. Finally, you observe the reward (and let’s ignore the user grouping
for now). Implement this both in the continuous and in the discrete (using a probit
model) case.

1Since the absolute scale of the weights does not matter for most estimators, it is equivalent to have the
weights be 0 or 1, rather than 0 or 2. Other weight distributions could be used for various reasons. For
example, using exponential weights is the so-called Bayesian bootstrap (Rubin, 1981). In that case, each
observation has positive weight in each replicate, which can avoid numerical problems in some settings,
but requires updating all replicates for each observation. Owen and Eckles (2012, §3.3) compare weight
distributions for the bootstrapping the sample mean.
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