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Concise overview of the course 

Lecture Topic Details 

1 Introduction Why questionnaires? 

2 Association & Correlation What are correlations? 

3 Association & Correlation Transformations & Combinations 

4 Reliability Model of Classical Test theory 

Types of Reliability 

5 Validity Evaluating Validity 

6 Design and Formulation Formal methods and importance 

7 Design and Formulation Formulating items 

8 Factor Analysis PCA important concepts 

9 Factor Analysis Example + Number of Factors & Rotation 

10 Factor Analysis 

Confirmatory FA 

PAF  

MGM 

11 Confirmatory FA SEM 

12 Cluster Analysis Ward’s method 

13 Cluster Analysis K-means 

14 Exam preparation  
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Course organization 

Here I provide an overview of the main organizational issues regarding MTO-D-

MAW / MTO-02-Schakel, and Construction and Analysis of Questionnaires. The 

content and organization of these three courses is almost identical, with some minor 

exceptions for the Construction and Analysis of Questionnaires course regarding the 

bonus assignments. Here I give an overview of the course materials, the organization 

of the lectures, and the exam. 

Books 

The only obliged book for this course is: 

 

• Julie Pallant, SPSS Survival Manual, Open University Press, Buckingham 

U.K., ISBN 0-335-21640-4, 2007 (3e editie).  

 

Besides the SPSS Survival manual I will point you to several – non-obliagtory – 

articles during the lectures. 

Lecture notes 

This set of lectures notes is the primary resource for this course. It contains all the 

theoretical materials you need to know, and it contains the assignments for the 

tutorials. During the lectures I will cover parts of these lecture notes. All the material 

in these lecture notes will be considered known at the time of examination. 

Lectures (“Hoorcolleges”) 

During the lectures I will discuss the lecture notes, provide additional examples, 

and give room for discussion of the topics. The lectures will also be used to highlight 

the links between the different topics covered in the lecture notes. 

Note that the lectures are not obligatory: If you understand the material in these 

lectures notes well you do not need to attend. However, the lectures are strongly 

recommended: here I will detail the techniques, provide a reference, and be able to 

answer your questions. 

The full course consists of 14 Lectures. On page 5 you can see which topic I will 

cover during each of the lectures. 
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Tutorials (“Werkcolleges”) 

During the tutorials the assignments (see final section of these lectures notes) will 

be discussed. Also, the tutorials give you the opportunity to ask questions about the 

lectures. 

There will be 8 tutorials during this course. The structure of the tutorials will be as 

follows: 

 

1. The tutor will check whether or not you have made the assignments. 

2. The tutor will discuss the assignments and will give the correct answers. 

These are also available on BlackBoard 

3. The tutor will give you a chance to ask questions. 

4. Fifteen minutes before the end of the session the tutor will hand out a 

small, 8-question, multiple-choice test.  

 

For each tutorial you can obtain a grade: If you have made the assignment you 

receive 2 points. Next, the small MC test at the end of the tutorial allows you to obtain 

another 8 points. (These are corrected for guessing: since it’s 2-choice questions you 

need at least 4 correct answers to start gaining points!). With 8 questions correct and 

making the assignments you can gain 10 points.  

At the end of the term you will receive an average grade for the tutorials: This will 

be the average of the best 7 grades obtained during the tutorials. 

 

Note that the tutorials are not obligatory!  The grade you obtain in the tutorials can 

help you, but is not necessary to pass the course (see “Final Grade”). However, the 

tutorials are – like the lectures – recommended. This is a hard course, and the tutorials 

allow you to practice the material interactively. 

Practical (OBLIGATORY) 

This course will also consist of 2 obligatory practical. Hence, these you will have 

to attend! 

For the first practical there will be a homework assignment. This homework 

assignment will be published on blackboard well in advance. You will have to hand in 

the homework, and subsequently, during the practical, you will have to do an SPSS 

assignment.  
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Again, these are obligatory. Not attending the practical will make you fail the 

course. 

The exam: 

The exam will be “closed-book”: hence you will not be allowed to bring any of 

your notes. You will receive a number of formula’s on a formula sheet. This sheet 

will be available on blackboard prior to the exam. 

The exam be multiple choice and will consist of 50 2-choice questions. On 

Blackboard you will find a practice exam. The practice exam will be discussed in the 

last lecture, and the answers can also be found on Blackboard. 

 

Your final grade will be determined as follows: 

 
Gtutorial = Tutorial grade (average of best 7). 

Gexam = Exam grade. 

Gfinal = Your final grade. 

 

If (Gexam > Gtutorial){ 

 Gfinal = Gexam 

} else, if (Gtutorial > Gexam){ 

 Gfinal = 1/3 * Gtutorial + 2/3 * Gexam 

} 

 

In words: If your exam grade is higher than the tutorial grade, only your exam 

grade will count. If your tutorial grade (the average of your 7 best tutorials) is higher 

than the exam grade, the tutorial grade will count for 1/3 for your final grade. 

 

Final grades will be rounded to the nearest half. A 5.5 shall not be given. 
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Introduction: Why should we care about 

questionnaires? 

 

More than half of all empirical research uses questionnaires and/or structured 

interviews. Thus, these are very important ways of obtaining data. Questionnaires are 

used as a measurement tool both in Scientific research as well as in Market and 

consumer research and thus it is useful for you to know how to evaluate and design 

questionnaires. That is what this course is about. 

Consider the following statement: “The Dutch are taller than the Chinese”. To 

check such a statement one uses a measurement rod to measure a sample of Dutch 

people and a sample of Chinese people and compare these two samples. The 

measurement rod exists – we all know how long 1 meter is – so this is relatively easy 

to do. 

Now consider a similar statement: “The Dutch are happier than the Chinese”. To 

check this statement we use something to measure happiness both amongst a sample 

of Dutch people as well as a sample of Chinese people. However, one could wonder 

how exactly do we measure happiness? 

Since we cannot use a measurement rod to measure happiness, we have to ask 

people about their happiness. The asking is often done using a questionnaire. 

Questionnaires are very often used in the social sciences and we use them not only to 

measure happiness, but many other things: Questionnaires are used to measure 

attitudes, opinions, feelings, knowledge, behaviors, etc. Since questionnaires are so 

prevalent in the social sciences you should understand how they are build, and you 

should be able to assess the validity of conclusions drawn from studies using 

questionnaires. 

During this course you will learn how to design questionnaires, and how to deal 

with responses to questionnaires. You will learn how to design and formulate 

questionnaires. Furthermore, you will learn how to formally evaluate questionnaires 

using reliability and validity, and you will learn how to summarize the answers to 

questionnaires using Factor Analysis and Cluster Analysis. 

Understanding and being able to create questionnaires is two-fold: On one hand 

you will be concerned with statistical and numerical evaluations, while on the other 
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hand you will be thinking about the actual content of the questionnaire: e.g. what 

exactly do we ask people. We will cover both of these during this course. In the 

remainder of this introduction we briefly touch upon both issues and discuss some of 

the major drawbacks of the use of questionnaires before we go into the actual nitty 

gritty. 

Wording and design of Questionnaires 

The first thing one has to worry about when creating questionnaires is the actual 

wording of both questions and answers. If we want to measure happiness (for both 

Dutch and Chinese people) we could for example choose to ask: 

 

• “Are you happy?”      0 – Yes  0 – No 

 

We could also ask 

 

• “Please rate your happiness on a scale of 1 to 10 where 1 means very 

unhappy, and 10 means very happy.” 

My happiness is:  _____ points. 

 

Or we could ask: 

 

• Please indicate how much you agree or disagree with the following 

statements: 

 

Statement Disagree   Agree 

1. “I am very happy” 0 0 0 0 0 

2. “I am satisfied with my life” 0 0 0 0 0 

3. “I often feel depressed” 0 0 0 0 0 

 

And we could even ask: 

 

• “I really like my iPhone”   0 – No  0 – A bit 
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Each of the above questions differs in wording, in lay-out, and in answer 

categories. And, each of the above questions will give you a different response. In the 

end it is up to you, the researchers, to decide which of these different methods of 

asking give a good assessment of people’s happiness.  

Probably the answer to the last question,  “I really like my iPhone” is not a good 

indicator of happiness. It seems to measure something else than happiness. This is 

similar to measuring someone’s length using a weighting scale: you do get a 

measurement, but you are actually measuring something else. This we call a validity 

problem, and we will discuss these kinds of problems in depth in the chapters on 

validity and reliability. 

The wording of both the questions themselves as well as the answer categories 

will in the end determine whether a statement like: “The Dutch are happier then the 

Chinese” is actually truthful. 

Statistical Techniques to Asses questionnaires 

Besides wording the right questions and designing questionnaires, we use many 

quantitative techniques to examine questionnaires. Here I want to give you a bit of 

rationale behind the quantitative analysis of questionnaire answers. 

Suppose we focus on the happiness question that used multiple statements: 

 

Statement Disagree   Agree 

1. “I am very happy” 0 0 0 0 0 

2. “I am satisfied with my life” 0 0 0 0 0 

3. “I often feel depressed” 0 0 0 0 0 

 

I will call the first statement X1, the second X2, and the last X3. We could now 

administer this questionnaire (e.g. have multiple people fill it out). Suppose we obtain 

the following dataset by 3 people: 

 

Person X1 X2 X3 

1 4 4 4 

2 4 4 1 

3 2 2 5 
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Thus, person 1 has a score of 4 on question X1. Hence, she almost fully agrees 

with the statement that she is happy. 

There are now two general ways in which we look at these kind of numbers to say 

something about a) the quality of the questionnaire, and b) the final scores of 

individuals. Since in the end we want to say whether person 1 is happy or not – or 

perhaps how happy she is, we want to work towards a single summary: a single 

happiness score. 

First, we can look at the internal consistency of the questionnaire: are the 

provided answers internally consistent. In the example above this is already tricky: the 

first person states to be almost fully happy (X1 = 4) but, she is also often depressed 

(X3 = 4). This is somewhat confusing. We would expect happy people to not be 

depressed. Hence we would expect an answer pattern like: X1 = 4 combined with X3 = 

2. Looking at these kinds of patterns will tell you something about the quality of the 

questionnaire. We will look at these patterns more formally when we discuss 

correlations, reliability, factor analysis, and cluster analysis. 

Second, we can look at how to summarize the scores on the questionnaire into a 

single happiness score. Given that we have X1, X2, and X3 for each of the three 

persons, can we give each of the respondents a single happiness score? 

For this second objective we could choose to (e.g.) compute an average score for 

each person. For person 2 we would get an average of (4+4+1) / 3 = 3. For person 

three we would get an average happiness score of (2+2+5) / 3 = 3. That seems weird: 

these two respondents give totally different answers to the questions, and still receive 

the same score. We should thus assess whether we can validly make such single-

number summaries. 

The core of numerical analysis of questionnaires, both for internal consistency as 

well as for summarizing is understanding correlations: The linear association between 

2 or multiple variables. Correlations run from -1 to 1, with -1 being a perfect negative 

correlation and 1 being a perfect positive correlation. Correlations are key in almost 

all statistical methods of evaluating questionnaires. Correlations quantify the linear 

association between variables, and we will discuss them extensively. To see why 

correlations are important, consider the answer pattern over persons for X1 = {4,4,2} 

and X3 = {4,1,5} as given in the table. Since these two questions measure something 

that seems to be opposed – if you are happy you are not depressed and vice versa – 

we would expect a pattern like: X1 = {5,4,1} and X3 ={1,2,5}. Or X1={1,1,3} and 
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X3={5,5,3}. Thus, high scores on X1 lead to low scores on X3. This expectation is not 

met in the actual data from our three respondents. Especially respondent 1 gives 

counter intuitive answers. The correlation in the expected case would be -1: a perfect 

negative correlation. The correlation in our observed case is -.69. This might make us 

wonder whether the relation between X1 and X3 is correct. 

Similarly, correlations can be used when thinking about summaries. We saw that 

person 2 and person 3 shared the exact same average score, despite a large difference 

in their scores on X1, …, X3. To see whether this happens often, one can look at 

correlations: if the correlation between two variables is high than those who score 

high on one variable also score high on the second variable. In such cases an average 

might be a good summary. If correlations are low (or negative) those who score high 

on one variable score low on the other and vice-versa. If such is the case averages 

might not be a good summary. Here is an example: 

 

Person X1 X2 Average  Person X1 X2 Average 

1 4 4 4  1 1 5 3 

2 5 5 5  2 4 2 3 

3 1 1 1  3 4 2 3 

4 2 2 2  4 5 1 3 

 

For the scores on the left there is a perfect correlation between X1 and X2. The 

averages are also a good summary of the actual scores. On the right the correlation is 

negative, and every person has the same average scores despite very different raw 

scores on X1 and X2. Hence, in the second case it might not be a very good idea to 

summarize the scores. 

I hope this gives you some intuition as to why correlations are important when 

assessing questionnaires. We will discuss correlations in depth in the next chapter. 

Drawbacks of Questionnaires 

During this course you will learn how to create and evaluate questionnaires. 

However, before we even begin you have to know that making good questionnaires is 

very hard, and that the outcomes of your research might depend very much on the 

questions that you ask. Consider for example the following study by Paynes (1951): 

Respondents were asked the following: 
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• ‘Do you think the United States should allow public speeches against 

democracy?’ 

 

When asked like this about 21% of the American Public believed that the US 

should indeed allow such speeches. Consider the second version of this question: 

 

•  ‘Do you think the United States should forbid public speeches against 

democracy?’ 

 

A similar group of people respondent to this second – and in many ways 

equivalent – question. Now, 39% of the respondents believed public speeches against 

democracy should be allowed.  

Don’t forget, your wording matters! 

 

Besides the wording, there are many things people are notoriously bad at when 

remembering and motivating their own behavior: Do you still know what color socks 

you were wearing last week? Do you know how many hours of television you 

watched in September 2012? Do you know why you bought the bike that you own? 

Because of this, you should be careful what you use questionnaires for. 

Questionnaires can be an invaluable tool for assessing psychological traits, opinions, 

moods, etc. However, questionnaires are often ill suited to measure behavior or 

behavioral intentions. We will discuss when you can, and when you should not, use 

questionnaires. 

Defining the place of the course in the empirical cycle 

Developing and evaluation questionnaires is only a part of the so-called 

“empirical cycle”. De Groot (1961) and Runkel & McGrath (1971) identify the 

empirical cycle running from 1) formulating a research problem, to 2) formalizing a 

theory, to 3) collecting observations / measuring. After which, one starts again with 

one. 

It has to be noted that in this course we focus pretty much solely on point 3. 

That’s a pity because actually thinking about problems and formulating theory is 

more fun. Also, in real-life, these things would go together. On the other hand, 
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focusing on observation and measuring only gives us the ability to really dig into 

questionnaires without being too worried about theories and research questions. 

 

Since we primarily focus on measuring, we often talk about a questionnaire or 

scale – and we sometimes do not even mention what it should measure (happiness? 

depression? etc.). Then we consider items X1, …., Xj on that scale. These are the actual 

questions. And we often consider answers of persons i=1, …, n on these same items. 

Thus we can then denote Xij: the question of the i-th person on the j-th scale. We will 

use some mathematical formalism, because its often shorter. Please don’t be scared 

about this, and always think back: what does the X mean, what does the i mean, what 

does the j mean? Etc.  From there you will become at ease with the mathematical 

analysis of questionnaire responses. Sometimes we will omit the i or the j subscript if 

it is clear that we are talking about a specific person or item. At some points it might 

seem like we are loosing reality, since you will see only symbols and numbers. But, 

this course is always about actual measuring, within the actual empirical cycle. 
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Association & Correlation 

All techniques to analyze questionnaires that we discuss in this course are – in one 

way or another – about association between variables; association is the foundation! 

Thus, in the first lectures we will discuss associations, and (one of its) mathematical 

formalizations: correlations. 

Nearly all techniques (except cluster analysis) assume that correlation is an 

appropriate measure for the association between two variables. Therefore we will first 

extensively consider correlations and her characteristics / peculiarities  

However, we will first start by introducing so-called measurement levels. 

Informally, these measurement levels describe “how much information” a 

measurement contains. We introduce these measurements levels since correlation(s) 

assume that variables are measured on interval scale or ratio scale. Thus, you should 

know what this means. 

 

Measurement and measurement scales 

Measuring is formally defined as: “Assigning values to objects on the grounds of 

a characteristic of these objects.” So, for example, if we measure your happiness we 

assign a value – for example 9 – for the characteristic happiness to you, the object. 

Whether 9 means happy or not remains to be seen, but at least we have performed a 

measurement. 

Researchers often speak of measurements of different scales: again informally 

meaning the information captured in a measurement. There are four measurement 

scales with increasing information in values: 

 

1. Nominal: classification only. No order. 

2. Ordinal: ordering objects 

3. Interval: values of ordered classes are appropriately interpretable; ratios of 

differences  

4. Ratio: values of ordered classes are appropriately interpretable; ratios of 

differences and ratios of the values themselves 
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The example in the following table shows how each of these compare. Consider 

the following outcomes of a swimming contest: 

 

 Nominal Ordinal Interval Ratio 

Ana “E” 1 (gold) 0:00 4:00 

Klaas “G” 2 (silver) 0:30 4:30 

Tom “B” 3 (bronze) 2:00 6:00 

 

On the Nominal scale all that matters is that there are 3 people that we can identify 

as different people {E, G, B}. This gives no information about the order, but just 

identifies three distinct values. 

On the Ordinal scale {gold, silver, bronze} we can also tell apart the three people 

(as in the nominal scale), but now there is an ordering: gold is better than silver, 

which is better than bronze. However, the distance between gold and silver could be 

very small (only 30 seconds), while the difference between silver and bronze can be 

very big (1 minute and 30 seconds). Thus, the ordinal scale gives an order, but does 

not make explicit the size of the differences. 

On the Interval scale we see that Ana, the quickest swimmer, has a score of 0 

seconds. Klaas is 30 seconds slower, and Tom is 2 minutes slower. We can now really 

see the difference and see that the difference between Ana and Klaas is smaller then 

between Klaas en Tom. By the way, note that we can also see the order, and identify 

distinct values. The interval scale thus contains all earlier scales. 

The Ratio scale contains all earlier scales but now adds a shared starting point. 

Ana swam for 4 minutes, Klaas for 4.30, and Tom for 6. We can now say that it took 

Tom 1.5 times the time it took Ana to finish the swim. This we could not have said 

using the interval scale. The fixed starting point (shared null point) allows us to make 

statements like “John is twice as fast as Peter”. This we cannot do using an interval 

scale. 

 

The measuring scale of variable is crucial in statistics to define which statistical 

techniques/tests can be used. Correlation assumes that variables are measured on 

interval scale or ratio scale (However, more general measures of association for other 

measurement levels do exist). The techniques we discuss in this course are not based 
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on one correlation (between two variables), but often on multiple correlations (more 

variables). However, we will first formalize and inspect a single correlation. 

Correlation 

The correlation r between X1 and X2, often denoted rx1x2 is a measure for the linear 

association between two variables. Informally you can think of: “To what extend can 

I predict X2 if I know someone’s score on X1?  

Correlations run from -1 (a perfect negative correlation, to +1, a perfect positive 

correlation. Before we look at the actual formula let’s look at three examples: 

 

Example 1: A perfect negative correlation. rx1x2 = -1. 

X1 5 4 1 3 2 4 5 1 

X2 1 2 5 3 4 2 1 5 

 

Example 2: A perfect positive correlation. rx1x2 = 1. 

X1 5 4 1 3 2 4 5 1 

X2 5 4 1 3 2 4 5 1 

 

Example 3: A positive correlation. rx1x2 = .7. 

X1 5 4 1 3 2 4 5 1 

X2 5 3 2 1 3 2 4 1 

 

We can see that for a positive correlation high scores on X1  are ‘coupled’ to high 

scores on X2. For a negative correlation this is reversed: high scores on X1 lead to low 

scores on X2. The plots of the different correlations between X1 and X2  look like this: 

 

 
Fig 1.: Correlations. rxy = -1 (left), rxy = 1 (middle), rxy = .7 (right). 

 

You can also see that for the third plot – a correlation that is not perfect – the pattern 

between X1 and X2 (or x and y) is much less clear. 
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Formulas: Deriving Correlations 

One way to understand correlations is to look at the formulas for how to compute 

them. This will also get you up to speed with thinking more mathematically about the 

answers Xij. 

We first consider a single item, and thus we omit the subscript j. To compute a 

correlation we start by computing the mean (average) score of people 1, …, i=n on a 

question: 

 

x =
xi

i =1

n
∑

n
 

(1) 

To compute the mean x  we add the score of all n people – thus we add x1 + x2 + … + 

xn, denoted xi
i =1

n
∑  -- and then divide by the total number of people, n. The mean 

gives a measure of the central tendency of scores on the question X.  

Once we have computed the mean, we can compute the variance of the item X: 

 

var(x) = ( ix − x
_
)2

n−1i =1

n
∑  

(2) 

For the variance we sum the squared distance of individuals scores xi to the mean 

score x  and divide this by n-1. The variance gives an indication for the “spread” of 

the scores. For example, if ten people all fill out a score of 3 on item X. Thus, X1=3, 

X2=3, …, X10 = 3. Then it is easy to see that the mean is 3, and the difference of each 

person to the mean is (3-3) = 0. Hence, the variance of X will be 0. 

If on the other hand scores are very far away from the mean because some people 

score very low while others score very high, then (xi = x )2 will be high. Thus if 

people differ a lot in their scores var(x) will be high. 

The variance of x is in units of x squared: this is done so that both negative as well 

as positive deviations from the mean lead to the same additional “spread”. However, 

it is often convenient to work with a measure of the spread in units that are equal to 

the units of X. This is the Standard Deviation of X: sx and it is nothing more than the 

square root of the variance: 
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 )var(xsx =  
(3) 

 

Up till now we have looked only at the central tendency and the spread of a single 

item. Let’s introduce a new item that we call y.  We can now define the co-variance – 

the shared “spread” – of x and y: 

 

cov(x, y) =
( ix − x

_
)( iy − y

_
)

n−1i =1

n
∑  

(4) 

Covariances run from –Inf to Inf. To compute the co-variance of x and y, cov(x,y), we 

multiply the deviation of an individual score on xi from the mean of x, ( ix − x
_
) , with 

his or her deviation from the mean on yi, ( iy − y
_
) . Next, we add these multiplications 

over persons 1, …, i=n, and divide by n-1.  

Note that if a person i scores higher than the mean on x and higher than the mean 

on y the product of the two deviances will be positive. The same is true if a person’s 

scores are lower than the mean on both variables since negative times negative is 

positive. Thus a consistent pattern of people scoring either high or low on both 

variables leads to a positive covariance. If however a person scores higher than the 

mean on x, but lower than the mean on y, he or she will contribute to a negative 

covariance. 

The final step for computing correlations is to “standardize” the co-variances. 

Here we make sure that the correlations run from -1 to 1. 

 

ss
yx

r
yx

xy
),cov(

=
 

(5) 

By dividing the shared “spread” – the covariance – by the product of the two 

individual standard deviations we standardized our measure of shared spread. 

I hope that gives you some intuition of what correlations mean, and how to 

compute them. There are faster ways to compute correlations however. The following 

formula gives the correlation directly from the raw scores and the averages, thus 

without separately calculation the variances and covariance: 
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(6) 

Obviously, Equations (4) and (5) give the exact same result. Make sure to try out the 

above formulas for yourself and confirm that the examples in the beginning of this 

section are indeed correct. 

 

Example: Correlations between salary and satisfaction: 

Now that we have seen how to compute correlations we want to get a better feel 

for how this number behaves. Let’s look at a plot of N=95 people of whom we know 

the following: 

 

• X: bruto salary per month in Dutch guilders (its an old example) 

• Y: satisfaction with salary (“tevredenheid salaris”) 

 

The table below the plot gives the mean and standard deviations of each. 

bruto salaris

7000600050004000300020001000

te
vr

ed
en

he
id

 s
al

ar
is

30

20

10

0

 
 

 

Descriptive Statistics

95 3321.05 1420.86
95 16.83 7.78
95

bruto salaris
tevredenheid salaris
Valid N (listwise)

N Mean Std. Deviation
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I hope you can already see from the Figure that there is a positive correlation 

between x (salary) and y (satisfaction): Higher incomes seem to be more satisfied. 

One way to check whether this is true is to see how many people contribute to a 

positive correlation, and how many contribute to a negative one. You can remember 

the following rules:  

 

1. people who score above the mean on x and above the mean on y 

contribute to positive correlations 

2. people who score below the mean on x and below the mean on y 

contribute to positive correlations 

 

But: 

 

1. people who score above the mean on x but below the mean on y contribute 

to negative correlations 

2. people who score below the mean on x but above above the mean on y 

contribute to negative correlations 

 

In this example we thus have (using SPSS to count the number of people in 

each cell): 

 

 
 

• 79 positive contributions to correlation 

• 16 negative contributions to correlation 

 

We can also plot the number of positively and negatively contributing people: 

45 14
2 34

< 3321.05
> 3321.05

sal
<16.83 >16.83

tevr
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This provides a quick way for you to guess correlations: if many people contribute 

to a positive correlation than it is likely positive, otherwise it is likely negative. 

 

In reality the correlation for the above example is, rxy = .740. (With covariance, 

cox(x,y) = 8179,179). It is thus indeed positive, but not perfect. 

 

Transformations and Combinations of variables 

The concepts of linear transformation, standardization and linear combination are 

important for all techniques for analyzing questionnaires. However, these concepts 

are quite hard. Basically our interest is in the behavior of summaries of items (such as 

the mean of x, or the variance of y, when we (linearly) “transform” the original score 

x1, … xn. Lets see what this means: 

Linear transformation 

A linear transformation means that we compute a new score out of an old score. 

For example, we compute someone’s length, vi, in meters from his or her length in 

centimeters, xi: 
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 vi = 1/100 * xi + 0 (7) 

 

Or in general, we linearly transform scores xi to vi using: 

 

 vi = axi + b (8) 

 

with constants a and b.  We can now wonder about the mean of v as a function of the 

mean of x, or about the variance of v as a function of the variance of x. Below are the 

mathematical rules for such transformations: 

 

 v = ax + b  (9) 

 

 var(v) = a2 var(x) (10) 

 

Standardization 

One very special linear transformation is called standardization. Here a = 1/sx, 

and b = - x  / sx. It is however easier to remember from the following formula: 

 

s
xxv

x

i
i

−

−
=

 

(11) 

Applying rules of linear transformation leads to: 0=
−

v  and var(v) = 1. Thus, after 

standardization a variable has a mean of 0, and a variance (and standard deviation) of 

1. We will often standardize variables before applying statistical techniques because it 

makes the means and the units of measurement of different variables comparable. 

 

Effect of linear transformations on cov and correlations 

We can also examine the effect of linear transformations on the covariances 

between variables. Suppose we transform x to v using: 

 

 vi = a xi + b (12) 
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and we transform y to w using: 

 

 wi = c yi + d (13) 

 

we  can now wonder about the covariance between v and w. This is relatively simple: 

 

 cov(v,w) = ac cov(x,y) (14) 

 

We can also wonder about the correlation between v and w, rvw, in terms of the 

correlation between x and y. By noticing that the correlation is the standardized 

covariance – as introduced earlier – you can deduce the following: 

 

 rvw = rxy (15) 

 

Hence, you can either standardize the covariance to obtain the correlation, or you can 

compute the covariance between standardized scores. 

 

To summarize this qualitatively: The… 

 

• covariance changes when the measuring units of x and y change 

• correlation does not change when the measuring units of x and y 

change: 

 

Correlation is a standardized covariance! 

 

Linear combination 

A linear combination is a sum of linearly transformed variables: 

 

 vi = a1x1i + a2x2i + a3x3i + b (16) 

 

with constants a1, a2, a3, b. That is even more tricky than just a simple transformation. 

However, also here we can express the means and variances of the new variable v as a 
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combination of the means and variances of the old variables. The mean can be 

expressed as follows: 

 

 
bxaxaxav +++=

−−−−

332211  
(17) 

 

and the variance is given by: 

 

 var(v) = a1
2 var(x1) + a2

2 var(x2) + a3
2 var(x3) + 

2a1a2 cov(x1,x2) + 2a1a3 cov(x1,x3) + 2a2a3 cov(x2,x3) 

(18) 

 

This latter term can be made much more general by noting that cov(x1, x1) = 

var(x1). The general form of Equation 15 is: 

 

var(v) = 
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(19) 

and allows you to compute the variances of linear combinations of 1, … J, items.  

 

I will actually not ask you to compute the variances of linear transformation at the 

exam. However, you should remember the following conclusion: 

 

• Conclusion: (co)variance of a linear combination of variables can be 

determined using the variances of and covariances between the original 

variables. 

 

Possible values of Correlations and Covariances 

One extremely important thing to keep in mind – which is why I am stressing it in 

a separate section – is to remember upper and lower bounds of all the quantities we 

work with: 
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• Covariance can take on any value – it depends from the values of 

original scales. 

 

• Minimum correlation is –1 when all points lie on a straight descending 

line, e.g. yi = -2 xi + 3 than rxy = -1 

 

• Maximum correlation is +1 when all points lie on a straight ascending 

line, e.g. yi = 0.5 xi – 6 than rxy = 1 

 

• No correlation: r=0, when points does not form a straight line. 

 

Next to the possible values, it is very important to know how correlations – since 

these are the building block for the quantitative analysis of questionnaires – change 

when the data changes, when distributions changes, etc. Below I give a number of 

examples. Make sure to become very familiar with correlations! 

Effect of distributions on possible values of a correlation 

When X and Y have exact the same distribution, ryx can range between –1 en +1. 

However, the more the distributions of X and Y differ, the more limited are the 

possible values of rxy . For example, the less the number of categories of the variables, 

the more limited are the possible values of rxy. In the most extreme case, when one of 

the variables has a variance of 0 then the correlation will 0 (actually, when the 

variance is exactly zero, the correlation will be undefined…) 

Let’s look at an example of how the distribution influences the final correlation. 

Suppose a very simple case, we measure X, which only has two levels, X=0 or X=1, 

and we measure Y, also with two levels Y=0, or Y=1. If we measure 50 people, the 

margins of the table below give the distribution of answers over X and over Y: 

 

 Y = 0 Y = 1  

X = 0   45 

X = 1   5 

 5 45 50 
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The question is, why do these distributions limit the correlation? This is easy to 

see once you start filling in the table, while keeping the distributions constant. 

Suppose we want a very large positive correlation: we then want many people to 

score {X=0 and Y=0} or {X=1 and Y=1}. These scores contribute to a positive 

correlation. However, since we cannot mess with the margins, we can at max fill out 

the following: 

 

 Y = 0 Y = 1  

X = 0 5 40 45 

X = 1 0 5 5 

 5 45 50 

 

We would love to have more people in the {0,0} or the {1,1} cells, but we could 

not because of the margins. If you compute the correlation of the above table you will 

find that it is rxy = .111! Hence, because of the margins – the distributions of X and Y, 

the maximal correlation you can find is limited. 

If we want a very negative correlation we can fill out the table differently, again 

respecting the margins. We now want as many people as possible in the cells {0,1} 

and {1,0}: 

 Y = 0 Y = 1  

X = 0 0 45 45 

X = 1 5 0 5 

 5 45 50 

 

This gives a correlation of rxy = -1. 

From this example you should note that: 

 

1. Correlation is generally not a good measure for association between two 

dichotomous variables 

2. When you use techniques that use correlations, make sure that variables have 

multiple values (>4)  

3. Always look at the variances and distributions of variables before correlating 

them! 
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Effect of outliers 

 Outliers – scores of individuals which are very far away from the scores of others 

– can have a very large effect on correlations. Consider for example the correlations 

between salary and satisfaction we looked at earlier. The original correlation was 

.740. Now, we add a very dissatisfied “Bill Gates” who earns 50 million a month, but 

has a satisfaction score that is only 3. This is depicted below: 

 
 

If we now compute the correlation again, we obtain a correlation of rxy = -0.179 

Would Bill have been happier, things would have been very different. Suppose he 

makes 50 mln per month, and his satisfaction is 29. We then find a correlation rxy = 

0.159. 

So remember: 

 

• The contribution of one point to the correlation can be so large that the 

correlation is almost solely determined by this value 

• Always check for outliers! 
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Effect of non-Linear association 

Correlation is a measure for linear association. The maximal correlation is 1 for 

line with positive slope, and the minimal correlation is –1 for line with negative slope. 

However, a correlation equal to 0 does not imply the absence of association: E.g., a 

parabola, y = x2 has perfect association between x and y, but rxy = 0. 

Restriction of range 

By restricting the range of one variable – thus selecting only a subset of the 

people – the correlation usually gets lower (closer to zero). Restriction of range means 

systematically selecting participants based on their scores on one of the two variables. 

Consider the salary and satisfaction example again. The initial correlation is rxy = 

0.740. When we selection only the high incomes (x > 3321) then rxy = 0.336. This is 

much lower. When we select only the low incomes low incomes (x < 3321): rxy = 

0.357. Again this is much lower. This happens because you limit the variance on the 

item on which you select the participants. 

By the way, randomly selecting participants will not necessarily lead to lower 

correlations. Also, when the true relation between X and Y is strongly non-linear – in 

which case correlations would not be a good summary – restriction of range can lead 

to higher correlations. Make sure you understand this latter point. 

 

Effect of measurement error 

Error, or noise in your measurements can influence the correlation between two 

variables. We will discuss this in more detail when we talk about reliability and 

validity. However, for now know that we separate: 

 

1. Systematic measurement error: With systematic error all scores are 

“moved” in one direction. Basically the scores are linearly transformed: vi 

= a xi + b. This has no effect on correlations. 

2. Unsystematic (or random) measurement error: With unsystematic error 

correlations will be closer to 0. The actual pattern of scores (e.g. those who 

score high on x also score high on y) will be distorted by the error. In the 

limit the error will totally obfuscate the pattern and rxy = 0 

 



 31 

Merging groups 

 A group of respondents can consist of multiple subgroups. The correlation in 

each of the subgroups can differ from the correlation in the total group. To see why 

please consider the following plots: 

 

 
 

 
 

Here we see two plots, in both of which two groups are displayed. It is clear that 

in each of the subgroups of 10 people the correlations are positive, rxy > 0. However, 

combining the two groups does not necessarily lead to a positive correlation. In the 

first plot (top) the combined correlation is actually negative, rxy < 0. In the second 

plot (bottom) it is positive, and it is even stronger than the original correlations in the 

subgroups. 

Basically, one can “rotate” one group with respect to the other. Thus, the positions 

of the means of the subgroups partially determine the correlation of the total group. In 

the top plot, the mean of group 1 is lower on X, and higher on Y than that of group 2. 

Such a relative position indicates a more negative correlation when combining the 

groups. In the bottom plot the mean of group 1 is both lower on X as well as on Y: 

this would indicate a positive correlation. 
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Testing the correlation 

Correlations in a sample are never exactly equal to 0. As you have learned for 

means in MTO-B / earlier courses, we could do an hypothesis test on the correlation. 

An often-used test is used to see whether it is likely to observe the correlation that you 

found in the sample give that in reality the correlation ρ is exactly 0. Thus we test the 

following: 

 

H0: ρ = 0  H1: |ρ| > 0 

 

For this test we can compute a t statistics, just as you have done previously to 

compare means. The t statistic for a correlation for the above null-hypothesis is given 

by: 

 

r
nrt 21
2

−
−

=
 

(20) 

where the degrees of freedom, df = n-2 are all you need to look up the p-value. SPSS 

will provide you with hypothesis tests of correlations as well when you compute a 

correlation table. This course however is not about statistical significance testing. 

 

Bivariate regression 

Many of you will have experience with (linear) regression. Here the aim is to 

predict a criterium y as good as possible using one or multiple predictor(s) x1, … xk.  

In the simple case we try to predict scores on y (let’s say someone’s weight) using 

scores on x (let’s say someone’s length). We do so by “fitting” a line to the 

observations: we look for the best linear description of y based on x. This 

mathematically looks like: 

 

yi = a xi + b 

 

The “best” solution to this problem is one in which a is  
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a = rxy s
s
x

y

 

(21) 

 

This gives for our salary / satisfaction example: Satisfaction = 0.00405 Sal + 3.377 

where 0.00405 = 0.740 * 7.78/1420.86.  

This is of interest primarily because you should know that when the variables are 

standardized, both sx and sy are equal to 1. Hence, when variables are standardized, 

then a = rxy. Regression weights are unstandardized (partial) correlations. 

 

Multiple correlation and explained variance 

In case of multiple regression the multiple correlation (MC or R) shows the 

correlation between the criterium and the best predicting linear combination of 

predictors.  

Suppose we use both salary as well as salary2 (salary squared) to predict 

satisfaction. We can then compute the multiple correlation of the linear combination 

of predictors (Satisfaction predicted = a1 * Sal + a2 * Sal2 + b) and inspect the 

correlation between the predicted satisfaction and the true satisfaction. We than obtain 

(using SPSS) the following multiple correlation coefficients for the two models: 

 

MC of the bivariate regression with Sal is  0.740 

MC of the multiple regression with Sal and Sal2 is  0.766 

 

The square of the multiple correlation shows the “proportion of the variance of 

the criterium variable” that is explained by the regression equation (linear 

combination of predictors), which is called the proportion explained variance. Thus, 

for the latter regression with both Sal as well as Sal2 the proportion of variance 

explained is: MC2 = R2 = 0.766 * 0.766 = .586; 58.6% of ones salary satisfaction is 

explained by salary. 

Causality 

Association (or correlation) does not imply causality. There is for example a 

correlation between weight and length. However, the following sounds bad: ‘When I 
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eat a lot now, and as a result of that gain 3 kilograms of weight, then my height will 

increase with 3 centimeters‘ 

What happens is the long people are generally heavier – thus length leads to 

weight, but not vice versa: you cannot (after a certain age) eat and hope to grow taller. 

Because correlation does not imply causality, the term explained variance is 

confusing (explaining is easily associated with causality). So actually a term such as 

predicted variance would be better. 
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Classical Test theory (CT): Reliability 

Introduction to Measuring and Test(s) 

Before discussing more modern (and complex) ways to think about scores on 

questionnaires we will first discuss Classical Test Theory. Classical test theory 

formalizes the observations Xij we obtain by administering a questionnaire to people 

i=1, …, n, with questions j=1, … J. 

Our aim is to measure something: meaning, to assign a value to an object based 

on the characteristics of the object. The object often is a person, and the value we 

want to assign is a specific score on (e.g.) a trait such as personality, Need for 

Cognition, Altruism, etc.  

Since, in the social sciences we can often not measure the characteristics directly 

we often work with a test: A systematic classification or measuring procedure. The 

test is often a questionnaire with multiple items used to measure a single trait. 

Questionnaires can be used to measure several traits at once, each using different 

items. For now we will first focus on measuring a single trait using multiple items 1, 

…. j. The items together are set to form a scale. 

A big part of this course will concern characteristics of scales: how do we create a 

scale (word the items for example), and how do we (statistically) evaluate the scale. 

We will use the framework of Classical Test Theory to evaluate the scale statistically 

(see next section). We will further focus on Reliability of a scale, and Validity of a 

Scale. This chapter introduces Classical Test Theory and discusses Reliability. 

Validity we will discuss in the next chapter. 

Altruism Scale Example 

Let’s make the above statement concrete using an example. Suppose we want to 

measure a trait called “Altruism”. There is no direct way – a measurement rod or 

something – to measure altruism. Thus, we make a scale that is composed of multiple 

items: 
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Please fill out the following five items: 

  Completely 

 disagree 
   Completely  

Agree 

X1 My own interest is mostly more important to me than 

the interests of others 

 

0 0 0 0 0 

X2 I enjoy it if I can do other people a favor 

 
0 0 0 0 0 

X3 If I do something for someone, I do want something 

back for it. 

 

0 0 0 0 0 

X4 I do not really think about others’ interests 0 0 0 0 0 
X5 I often take others’ problems to heart 

 
0 0 0 0 0 

 

Here the scale that intents to measure altruism consists of 5 items. Each is scored on a 

five-point scale (note the confusing use of the word scale here for both the full test, as 

well for the answer categories for each item). 

Eventually, our intention well be to come to a score Xi for each subject i which is 

based on her or his scores on all of the 5 items 1, …, J=5. Before we will do so we 

have to see whether these scores can be combined logically, and how we should do 

so. Classical test theory provides us with a structured way of thinking about this.  

Exercise: Based on the above questions, do you think computing an average of the 

5 items would lead to a good score on the test? Why? 

 

The Model of Classical Test Theory 

Classical test theory provides a way to think about the scores X1, …, Xj obtained 

for a test. The basic idea underlying classical test can be represented by the following 

formula: 

 

 Xij = Tij + Eij (1) 

 

In words: the score of a person i on item j (Xij) is equal to his or her true score Tij 

and some error Eij. The following definitions you should know: 
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• We call X the observed or manifest scores.  

• We call both T and E theoretical or latent scores 

 

Keep in mind that we only observe X. The theoretical true score T and the error E 

are not observed directly. However, we assume that these form the underlying truth 

that leads to the observed score of X. 

To come to a score on a test, classical test theory focuses on the som score of 

individual items, X = X1 + X2 + … + Xj. This final sumscore – which is the actual 

score on the test – is then decomposed into a systematic part: T = T1 + T2 + … + Tj 

and an unsystematic part: E = E1 + E2 + … + Ej. Graphically we can represent this 

using the following figure: 

 
Here, manifest variables (the X’s) are presented using a square, while latent 

variables are presented using a circle. 

Informally one can think of the model of classical test theory as asserting that 

whatever we measure (using multiple items) is composed of someone’s true trait (for 

example how Altruistic you really are) and some imprecision in the measurement 

named error. We obviously would like to have very small errors: if the error is 0, 
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then: Xij = Tij + Eij = Tij + 0 = Tij. This would mean that we directly observe the true 

scores!   

Assumptions 

In reality, there will be some (measurement) error. However, the crux of classical 

test theory is to make assumptions about the error. By making a number of 

assumptions we can show that if we sum over many observed scores to obtain a final 

score (thus X = X1 + X2 + … + Xj) that the final observed sumscore on the test X will 

be equal to T, the sum over all true scores. 

Let’s see what kind of assumptions we need for this to work, and see if they are 

reasonable. The assumptions are: 

 

1. Over persons, we assume the average error to be 0: E = 0 . This is very 

interesting since (recalling the facts about linear combinations) leads us to 

conclude that: T = X . Informally this basically says that errors go in all 

kinds of directions, but not systematically in one specific direction. 

Averaging over all errors Ei gives 0. 

2. Over persons, the error E is independent from everything that E is not a 

part of. Thus: rEY = 0, where Y is a variable of which E is not a part. Note 

that a special case of this is: rET = 0. This last part means that the errors are 

not related to the true scores. 

 

You can think of these assumptions about the error as formalizing that the errors 

are unsystematic: they are not related to the true scores, and they average out to 0. 

Thus, the sum Xi = Xi1 + Xi2 + … + Xij gives us a good idea of Ti.  

We also assume this to happen over different persons (as specified above), thus X 

= X1 + X2 + … + Xi (now dropping the subscript j for the items).  X now is the sum 

score on the test over all individuals. The assumptions above allow you to derive the 

variance of X since X is a linear combination of E and T: 

 

 VAR(X) = VAR(T) + VAR(E) (2) 
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This is easily seen since rET = 0. Thus, the variance of X – the spread in test scores 

of individuals – is the sum of the variance of T which is the actual spread in true 

scores and the variance of the error scores E. There is no covariance term since this is 

zero (rET = 0 means COV(E,T) = 0). 

Note that the above is a theoretical model, and the assumptions might not hold in 

reality. However, they are fairly reasonable given the idea of unsystematic error. And, 

this idea allows us to define reliability. 

Reliability 

Before giving the statistical definition of reliability, we will first give the 

definition in words: Reliability can be thought of as the stability of a measurement 

instrument (e.g. a test): It is the extend to which test scores of individuals remain 

constant in constant situations. For example: If we measure someone’s length using a 

measurement rod, the rod is consistent (and thus reliable) if every time we measure 

the length (and the person did not grow or shrink in the meanwhile) the measured 

length is exactly the same. 

Statistical Definition of Reliability 

From our model of classical test theory we can now formally define the reliability: 

 

 
𝑅!!! =   

𝑉𝐴𝑅 𝑇
𝑉𝐴𝑅(𝑋)   =   

𝑉𝐴𝑅(𝑇)
𝑉𝐴𝑅 𝑇 + 𝑉𝐴𝑅(𝐸) 

(3) 

Which states that the reliability, denoted rxx’, is equal to the variance (spread) in 

true scores, so the actual differences between people, divided by the variance in 

observed scores. However, the second expression is more intuitive: The reliability of 

X is equal to the proportion of true spread in scores, VAR(T), of the total observed 

spread, VAR(T) + VAR(E).  

To gain some intuition please consider two extreme cases: first, there is a case 

when the variance of the errors is very very large compared to the variance of true 

scores. In this case apparently there is a lot of noise / error / imprecision in the 

measurement and the reliability rxx’ tends to 0. If, on the other hand the measurements 

are very precise, and thus the variance of the errors is 0, then expression 3 tends to 1 

since VAR(T) / VAR(T) = 1. 
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Reliability thus quantifies variance of true scores in relation to the error variance. 

Small error variance gives a reliable measurements rxx’ => 1, while large error gives a 

unreliable measurement rxx’ => 0. Note that reliabilities will always be bounded by 0 

and 1, and that 1 means perfectly reliable, and 0 means perfectly unreliable. 

Four ways of estimating Reliability 

Now that we have defined reliability formally, we can start to compute it. 

However, we have a small problem: we never really observe T or E, we only observe 

X. So, we don’t really know VAR(T) and VAR(E) separately. We only know 

VAR(X)…  

However, not to worry! We have great ways of estimating rxx’ without having 

direct access to VAR(E) or VAR(T). The key to all of these methods is a property of 

correlations that we discussed earlier: If there is a lot of unsystematic error in a 

measurement of a variable X, then the correlations of that variable with another 

variable Y go down. The more unsystematic error, the smaller the correlation! 

Similarly, we can use this fact to estimate reliability: if we measure X, and then 

measure Xt=2 again, then we can correlate the two: rxx2. If rxx2 is close to 1, then 

apparently there was little error in the measurements. If rxx2 is close to 0, then 

apparently there was a lot of error. Hence, the correlation between X and Xt=2 is an 

estimate for the reliability rxx’! 

All methods of estimating reliability rely on correlations, and the fact that 

correlations decrease as soon as unsystematic error increases. However, we can think 

of several ways of correlating different scores of X: 

 

1. Test-retest reliability: Test re-test reliability estimates reliability using the 

same test administered at two points in time. We obtain Xt=1 and Xt=2. The 

correlation between these is used as the reliability estimate. 

2. Parallel test reliability: Here we use two different, but parallel tests. Both 

test measure the same treat, and we correlate the two tests. We thus get 

Xversion=1 and Xversion=2, and their correlation is used to estimate the 

reliability of the test. 

3. Split half reliability: Split half reliability is based on the idea that a test is 

composed of multiple items X1, … Xj. We can now compute a sumscore 

over the first half of the items XA = X1, … Xj/2, and a sumscore over the 
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second half: XB = Xj/2+1, …, Xj. We can now correlate XA and XB to 

estimate the reliability. One thing to keep in mind is that the longer the 

test, the more reliable the scores (e.g. because than the errors of individual 

scores are more likely to actually average out to 0). Since the split half 

method is based on only half the test, usually we use the Spearman-Brown 

formula to recompute rxx’ for the full length of the test. (See further down: 

“Reliability and Test Length”). 

4. The Internal consistency method: Since it is not directly clear which halves 

we should you for the split-half method, the internal consistency method 

computes the “average of all possible split half reliabilities”. More on this 

in the next section. 

Internal Consistency Method: Cronbach’s Alpha 

The most common measure of reliability in psychological test construction is the 

internal consistency method. This method computes the “average of all possible split 

half reliabilities”. This is estimated using Cronbach’s α. (Named after Cronbach, who 

first wrote about this method). 

Before we dive into the definition of Cronbach’s α and ways to compute it, first 

note that Cronbach’s α in practice is an underestimate of the actual (population) 

reliability. This is caused by the fact that the split-half method (and thus also 

Cronbach’s α)  is based on the assumption that all items X1, … Xj are equivalent. This 

is in reality not the case, and will lower our estimates.  

Cronbach’s α is not actually computed by averaging over split-half reliabilities. 

Rather, it is computed directly from a covariance matrix of the covariances between 

X1, … Xj. The formula for Cronbach’s α is: 
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To explain how to compute this by hand, consider the following covariance matrix 

for our 5-item Altruism scale: 
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• Now, var( jX )
j=1
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, is the sum of all diagonal elements, and thus 

6565+.3946+.5993+.4904+.7239 = 2.8647 

 

• var(X) is the total variance of X, which is the sum of all of the elements of the 

covariance matrix: 2.8647 + 2 x (.1005 + .1932 + .1834 + .1581 + .1276 + 1520 + 

.1319 + .1906 + .0731 + .1653) = 5.8161 

 

• And thus: 
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Note that Cronbach’s α is used very often in all of social sciences. In practice it is 

used both to see whether items X1, … Xj, indeed all measure the same construct, and it 

is used as a mark of quality of the questionnaire. Below we will discuss how 

Cronbach’s α is used in practice. However, first we will discuss some features of 

reliability in general that you should keep in mind. 

Properties of Reliability 

Before we discuss how reliability is used in practice, we first discuss several 

properties of reliability. 

Reliability and Variance of True Scores 

First, note that the variance of true scores limits the possible reliability. In the 

limiting case, if VAR(T) = 0, then VAR(T) / VAR(X) will be 0. This is something to 

keep in mind for example when you select a group of individuals who score high (or 
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low) on a test. You will then restrict the range of X, and likely restrict the range of T, 

thus leading to a lower reliability. Another way to think of this is to consider that 

correlations go down when you restrict the range of a variable. If the correlation goes 

down, for example between X1 and X2, then the reliability will go down. 

Reliability and Variance of Error Scores 

As noted earlier, large error scores will decrease the reliability. Thus, if you get 

more error (or noise) in your measurements, the reliability will go down. 

Reliability and Test Length 

As hinted on when discussing split half reliability, the reliability of a test goes up 

once the test goes longer, (e.g. J becomes larger). The relationship between test length 

and reliability can be expressed formally:  
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Here rxx’ is the reliability for a test of length J, and rkk’ is the reliability for a new test 

of length K*J. This is called the Spearman-Brown correction for test length. 

Let’s give a quick example. The reliability (using Cronbach’s α) of the J=5 

altruism scale was estimated at .6343. If we would increase the length of this scale to 

20, then K = 20/5 = 4. Now we can estimate the reliability of the new test: 

 

rkk' =  ( 4 * .6343 ) / ( 1 + (4-1) * .6343 ) = .8895. 

 

When computing split-half reliability we use a correction of K=2 since the real 

test is twice as long.  

We can also use Spearman-Brown to compute how the reliability would go down 

if we decrease a test in length. If we decrease some other test in length from J=10 to 

J=8 items than K = 8/10, and we can fill in the formula again. 

Judging Scale Reliability using Cronbach’s Alpha 

We have now covered all the theoretical material, and will now see how 

Cronbach’s α  is used in practice. It is used for 2 things: 
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1. To assess the reliability of a scale (e.g. of a somscore of X1 + X2 + … + 

XJ) 

2. To assess the contribution to the reliability of individual items to a scale. 

 

Luckily, we do not have to compute Cronbach’s α ourselves, we can do so using a 

computer program such as SPSS. During the practical you will see how this is done.  

 

Here, we will consider the following scale measuring “political dimension” which 

was filled out by N=2461 respondents. Here are the item names and descriptions: 

 

Q67.1 Labor Union harder politics 

Q67.2 Workers battle for equal positions 

Q67.3 Class distinctions smaller 

Q67.5 Government interferes with salaries 

NEW Difference between high and low salaries smaller 

 

When we compute Cronbach’s α for this scale in SPSS we obtain Cronbach’s α = 

.731.  We now want to know whether this is “good” or not. There are several rules of 

thumb that are used: 

 

1. When we want to use the scale to draw conclusions about groups of people 

a Cronbach’s α < .6 is considered insufficient. A .6 < Cronbach’s α < .7 is 

considered sufficient, and Cronbach’s α > .7 is considered very good. 

2. When we want to use the scale to draw conclusions about individual 

people a Cronbach’s α < .7 is considered insufficient. A .7 < Cronbach’s 

α < .8 is considered sufficient, and Cronbach’s α > .8 is considered (very) 

good. 

 

Given this classification, and if we want to use the above scale to draw 

conclusions about the political dimension of countries, we would conclude that the 

scale is “very good”.  

Note that these are rules of thumb! And thus, they are mostly wrong, but often 

useful. You should know that a Cronbach’s α close to 0 is very bad, and a Cronbach’s 
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α close to 1 is very good. Psychologist often consider (in practice) Cronbach’s α > .8 

to be sufficient. However, there is no need to memorize exact cut-offs for the exam. 

Now that we have concluded that the scale overall is good, we can also use 

Cronbach’s α to determine whether individual items contribute meaningfully to the 

scale. If they do not, we can delete them. For this we look both at the correlation 

matrix, and the “Item-total” statistics which are provided by (e.g.) SPSS: 

 

 

 
 

Here, often the following rules are used: 

 

1. The “Item-Total” correlation of each item should be higher than .3. This 

basically means that the correlation of an item (say Q67.1) to the sumscore 

of all the other items should be higher than .3. In this case it is .4249. 
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Since for each item the Item-Total correlation is higher than .3 this is no 

reason to delete items. 

2. “Alpha if item deleted” should be higher than alpha. This means that if 

you would remove an item from the scale (say Q67.1) and compute 

Cronbach’s α again for the 4 items that you are left with (Q67.2, Q67.3, 

Q67.5, NEW), the new Cronbach’s α is .7144. This is lower than the .731 

found for the full scale, and thus the reliability would decrease if we would 

remove this item. This is a reason to keep it. In this case, Cronbach’s α 

would go down no matter which item we delete, and thus we would not 

delete any items. 

3. We look at the content of the items and see if it fits. This is not a statistical 

argument, but rather a substantive argument. In this case this is hard to 

evaluate since you cannot see the actual items.  

 

Using the above rules we would decide that the scale itself is good (since the 

overall reliability is high) and we would conclude that each of the 5 items contributes 

to the scale (and we would thus not delete any). 

Convergence and Divergence 

Here I briefly discuss two more criteria that are often used to assess a scale. These 

are also directly related to validity (next chapter), but I will briefly introduce them. 

Suppose you have two tests, one measuring Altruism, and one measuring Political 

Dimension. We can than talk about convergence of items which means that items 

correlate high to their own scale (e.g. the Item-Total correlation is high, and 

Cronbach’s α –if-item-deleted is lower than Cronbach’s α). Thus, convergence means 

that items indeed correlate highly to the other items that are supposed to measure the 

same construct. 

Divergence implies that items on one scale have a small correlation to items of the 

other scale: you would want the Altruism items to correlate low with the Political 

Dimension items. Why? Well because if the correlation is 1, then they measure the 

exact same thing and its ridiculous to give the measurement two different names. 

Both convergence (high association to items in own scale) and divergence (low 

association to another scale) are desirable properties of items (and of scales as a 
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whole, more on this later). We will discuss this more when we discuss validity, and 

also when we discuss factor analysis. 
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Validity 

After discussing Reliability (informally: whether or not a score is consistent), we 

will now discuss validity. Validity is tenability: Validity concerns whether or not your 

are measuring what you intend to measure. Or, even broader, validity concerns 

whether or not, given the research setup, measurements, and statistical analysis the 

conclusions drawn from a research project are valid: (e.g.) do they actually hold true. 

Validity as such is a very broad concept. Validity can concern the total setup of a 

research project, the statistical analysis that is done to derive the conclusions, or 

merely the measurement instrument.  

Here we will focus primarily on three kinds of validity, criterion oriented validity, 

construct validity, and content validity. These are the types of validity that are 

primarily used to evaluate measurement instruments. However, before we dig into 

these types of validity, we will first briefly discuss some other types of validity that 

you could encounter. 

 

Different kinds of validity 

Before digging into the types of validity that are most useful for evaluating 

measurement instruments its good to give a general overview. I consider two types of 

validity: 

 

1. Validity of scientific statements in general  

This type of validity concerns: Statistical conclusion validity, internal validity, 

construct validity, external validity, etc. etc. You will cover these in MTO-E/MTO-03 

MAW (course by Dr. John Gelissen). These types of validity all concern the 

interpretation research results in general. Hence, they are always relevant and thus 

also apply to tests/questionnaires. 

 

2. Validity of measuring instruments 

For the validity of measuring instruments we will consider criterion oriented 

validity, content validity, and construct validity. Criterion oriented validity concerns 

the relationship of a test score with scores on another test (often a behavioral 

measure), which we will call the “criterion”. Content and construct validity both 
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concern the actual questions and wording used in a questionnaire. I will discuss these 

in more detail below. However, first I will discuss the (conceptual) relationship 

between reliability (covered in the previous section) and validity. 

Relation reliability and validity 

Both reliability and validity are desirable characteristics of a test: we would like 

tests to be both reliable and valid. In layman terms: we want the test to be consistent 

(reliable) and measure what it intends to measure (valid). 

But errors or noise, and therefore a lack of reliability of a test, limit the validity of 

a test. Informally this is easy to understand: if your test measures a lot of noise (and 

thus is unreliable), it does not measure what you intent to measure. Since mostly tests 

are created to measure (e.g.) traits, not noise, a test that measures noise does not 

measure what it intends to measure.  

The phenomenon that an unreliable test leads to an invalid test is called 

“attenuation”. We will formalize this in the context of criterion oriented reliability 

and you will learn how you can (theoretically) correct for this phenomenon.  

It can be said that reliability and validity are related concepts in a way that 

reliability is a necessary but not sufficient condition for validity. Note that this is not 

true the other way around: an invalid measure can still be very reliable. So the 

following is generally true: 

 

• We can have tests that are both reliable and valid (those are the ones we 

want). 

• We cannot have tests that are unreliable but still valid (impossible). 

• We can have tests that are invalid but very reliable. 

 

For example, if we would use an intelligence test that would give different IQ 

score to the same people when applied in same situations than the test would be 

neither reliable nor valid because its results could not be trusted to measure anything. 

On the other hand, if the same test would be reliable, then it could be possible that the 

test is valid (that it indeed measure intelligence), but it still can be the case that it 

reliably measures something else than intelligence.  
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Criterion oriented validity  

We will now more formally discuss criterion oriented validity, and in the process 

we will discuss “attenuation”. 

Criterion oriented validity indicates if a test is a good predictor of behavior 

outside the testing situation. For example, consider an intelligence test. We will call 

the score on the intelligence test X. To assess the criterion oriented validity of X we 

need a criterion. Let’s choose someone’s high school performance as the criterion: we 

believe that those with a high intelligence should do well in high school, while those 

with a low intelligence should perform poorly. We will call the high school 

performance score Y. We can now formally define criterion oriented validity as the 

correlation between the intelligence test score X, and the performance in school Y: 

 

Criterion oriented validity = RXY 

 

Criterion oriented validity is often used in the context of predicting behavior 

outside of the testing situation: is the test indeed a good predictor for the actual 

behavior (school performance in the example) that it is supposed to measure?  

Note that criterion oriented validity is measured using a correlation coefficient: 

the same correlation coefficient as we discussed extensively in previous sections. 

Thus, all facts that you know about correlation coefficients will also hold in the case 

of criterion oriented validity: (e.g.) a lot of noise in either X or Y will decrease RYX, a 

non-linear relationship will decrease RXY, a very small variance in either X or Y will 

decrease RXY, and a restriction of range in either X or Y will decrease RXY (etc., etc.). 

(Correction for) Attenuation 

Reliability and (criterion oriented) validity are related through a phenomenon 

called attenuation. Imagine that, apart from measuring errors, X (the test score) and Y 

(the criterion score) correlate perfectly. Therefore – in terms of our model of classical 

test theory – true scores on X (which I will call XT) correlate perfectly with true scores 

on Y (YT): rXTYT = 1. This is the true criterion oriented validity. However, it might be 

distinct from your observed criterion oriented validity. 

Since, in practice, true scores are unknown, you can only calculate the correlation 

between observed scores on X and Y: rXY. Now, given that rXY is a correlation, it will 

adhere to all facts we know about correlations. One of these facts is that if either of 
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the variables (X or Y) is measured with noise, then the observed correlation RXY will 

go down. So in practice, if either X or Y is not perfectly reliable (RXX’ < 1 or RYY’  < 1) 

than RXY < 1. This is called attenuation. 

In general, we can summarize this result: 

 
RXY  ≤  RXTYT

 
(1) 

 

Make sure you thoroughly understand the above Formula! 

 

If the two reliabilities (RXX’ and RYY’) are known (or can be estimated), then we 

can actually estimate RXTYT from RXY. The easiest way of thinking about this is given 

by the following figure: 

 
 

 

We can now describe the exact relationship between rXY and rXTYT (by thinking of 

this as a pad-model): 

  

 rrrr YYXXYTXTXY ''=  
(2) 

 

Or, equivalently: 
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This allows us to “correct for attenuation”: We can compute RXTYT if we know 

RXY, and have estimates of RXX’ and RYY’.  

 

You should familiarize yourself with questions like: 

 

1. What is the maximum value that RXY can take when RXX’ = .64? You can solve 

this question by thinking about the maximum values of RXTYT and of RYY’. If 

the true criterion oriented validity is perfect then RXTYT =1. If Y is measured 

without any noise, and hence its reliability is perfect, than RYY’ =1. Thus, RXY 

= 1 * sqrt(.64) * sqrt(1) = .8. 

 

2. What is the estimate of rXT,YT, when rXY = 0.4, rXX’ = 0.6 and rYY’ = 0.9? Here 

we use formula (3) and fill it out: 0.4 / ( sqrt(.6) * sqrt(.9) ) = .54. 

 

3. What is the maximum value of RXY when RXTYT = .8. This we can do even 

without filling out the formula: we know that RXY ≤ RXTYT. These two are 

equal if and only if RXX’ = RYY’ = 1 (when the reliability is perfect of both X 

and Y). In this case we would observe the maximal RXY and thus the maximal 

RXY = RXTYT = .8. 

  

To conclude: Because low reliability lowers the validity, you could say that: 1) 

reliability is a necessary but not sufficient condition for criterion oriented validity, and 

2) because of imperfect reliabilities low rXY are common  

Construct and content validity 

We will now turn to construct and content validity. Lets first define them: 

 

1. Construct validity: Indicates whether a test is a good measurement of the 

underlying theoretical construct. 
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2. Content validity: Indicates whether the items that are used to measure the 

construct indeed cover the content of the construct. 

 

Lets discuss both using an example. Suppose we want to measure intelligence, 

than defining intelligence is the first step to construct validity: which traits / 

measurements jointly form intelligence? Is it mathematical reasoning and language 

perception? Or is visual ability also a part of intelligence? These types of questions 

determine whether or not the construct validity is sufficient. Subsequently, content 

validity is one step more concrete: Does a question like 1+1=? properly measure 

mathematical ability? Jointly these are ways to evaluate a test. 

We will more formally define construct validity based on three criteria: 

 

1. Is the content domain of the construct sufficient? 

2. Is the internal structure of the construct investigated? 

3. Is the nomological network specified and tested? 

 

Good content domain of the construct 

The content domain of a construct consists of a description of characteristics that 

the construct is about: “I want to measure X” -> describe X.  

The items of the test/questionnaire have to be a good representative of the content 

domain of the construct. The concept of content domain is related to the content 

validity of the scale: content validity of scale is ok when the content domain of the 

construct is specified in a good way and the items are specified accordingly. 

There are several ways to decide if the content domain of a construct is sufficient. 

Based on theory, literature research, research on measuring instruments (e.g. other 

scales) of the same construct, or verification by experts. The content domain has 

boundaries that can be used to judge if items are within or outside a certain content 

domain. Furthermore, the content domain has structure that can be used to distribute 

items across the content domain. 

Unfortunately, many content domains cannot be described in detail in order to 

provide good basis for item construction or evaluation of content validity (e.g. 

intelligence, sense of humor, etc.). Thus, assessing the content domain of a construct 

is always subjective. 
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Internal structure of the construct is investigated 

From the description of the content domain can follow that the construct does or 

does not consist of multiple separate (sub)constructs (see the intelligence example 

above). The internal structure of a construct refers to the possible division of a 

construct in multiple sub-constructs. Research on internal structure is done in part by 

using statistical techniques such as factor analysis (and a bit of internal consistency 

analysis – Cranach’s α). We will cover some of these techniques in later lectures. 

Nomological network of the construct sufficient 

The most formal way of assessing the construct validity of a test is to assess its 

nomological network. This method consists of examining the relations (correlations) 

between different tests that measure the same construct and different tests that 

measure different constructs. There are three basic ideas: 

 

1. As constructs get more similar, the correlations between tests of these 

constructs should be higher 

2. Two tests that measure the same construct should have a high correlation 

(convergence) 

3. A test should have a low correlation with tests that measure other non-similar 

constructs (divergence) 

 

The nomological network of a construct is sufficient when relationships between 

the construct and other constructs meet the above basic ideas. Familiarize yourself 

with these ideas and establish that these are indeed reasonable properties of a test. 

The nomological network of a construct can be formally tested using the 

multitrait-multimethod (MTMM-) matrix by Campbell & Fiske  

Multitrait-multimethod matrix (MTMM matrix) 

Let us consider several constructs, ideally two: a similar and a non-similar 

construct. We will call the total number of constructs I. Furthermore, let us use 

different tests, ideally two, to measure these constructs. We will coin the number of 

tests J. When can then create what we call the MTMM matrix by considering the 

correlations of each of the constructs, measured using the different tests. We thus 

obtain a matrix of I*J correlations.  
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  J1 J2 

  I1 I2 I1 I2 

J1 
I1 B    

I2 F B   

J2 
I1 C D B  

I2 D C F B 

 

Lets make this concrete using an example. Suppose we measure the following two 

constructs (I): 

 

Construct 1: English ability (E) 

Construct 2: Math ability (M) 

 

And suppose we use two different methods of testing (J): 

 

Measure 1: IQ-test (verbal [IQ-e], nonverbal [IQ-m]) 

Measure 2: High school grades (Eng, Math) 

 

We now have I*J = 2*2 = 4 variables. And, we can complete our MTMM matrix 

for these constructs and methods; 

 

  Grades IQ 

  Eng Math IQ-e IQ-m 

Grades 
Eng B    

Math F B   

IQ 
IQ-e C D B  

IQ-m D C F B 

 

 

Make sure you interpret each of the possible correlations. For example:  
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• B: correlation between tests of same construct, same method. This is the 

reliability of the English grade. 

• C: correlation between tests of same construct, different methods  

• F: correlation between tests of different constructs, same method  

• D: correlation between tests of different constructs, different methods 

 

Logically, we would think that B > C, B > F, B > D. However, more interesting 

are the following inequalities (which should all hold according to the MTMM matrix). 

We will also introduce convergence and divergence in this framework: 

 

• C > 0 (convergence): The English ability scores using the two different 

methods correlate (hopefully >> 0). Thus, it does not matter which test we 

use, we obtain similar scores on English ability. That is preferable. 

•  C > D (divergence): The correlation between English scores using one test 

or the other is higher than the correlation between the English score and 

the Mathematics score. This is also preferable.  

• C > F (more divergence): The correlation between English ability scores 

obtained using different methods is higher than the correlation between 

English and Math scores using the same method. 

 

In general note that the basic idea is that you would like a construct to correlate 

with similar construct measures differently (convergence) and not correlate with other 

constructs – irrespective of the method (divergence). Both convergence and 

divergence are thus desirable properties. 

Note that convergence and divergence can also be applied on item level: An item 

converges when it correlates highly with own scale (corrected item-total correlation). 

An item diverges when it correlates (much) less with other scales. Again, both 

properties are desirable. Convergence and Divergence will be discussed in more detail 

in the practice sessions. 

Note: Answer tendencies  

A final note on validity concerns so-called “answer-tendencies”: the tendency of 

respondents to fill out a questionnaire in specific way due to (e.g.) fatigue or 

perceived social norms. These types of tendencies are a large threat for validity: when 
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answer tendencies are present than the scores on items are not only determined by the 

trait that we try to measure but also by confounding factors.  



 58 

Introduction to questionnaire construction 

Up to now we have been discussing a number of formal ways to think about 

scores of individuals on psychological scales. What we have left out up till now is 

how to actually create these scales: we have not yet covered the “art” of creating 

surveys. This next section of the lectures concerns the lay-out and formulation of 

questionnaires. But first, I want to be very clear about its importance: You can be a 

great analyst, doing your reliability magic (and more advanced techniques which we 

will discuss later), but in the end participants respond to what they see on their sheet 

of paper or on the screen. Making sure that people understand what they are looking 

at, understand the questions, and can answer them consistently is key to collecting 

meaningful measures.  

To stress its importance, consider the simple survey intended (in the USA) to 

measure voting preference. During the 2000 USA presidential election Florida used 

the following “survey” to illicit the votes: 

 

 
Position one contains “George Bush”, and position 2 on the left contains “All 

Gore”. Respondents were supposed to punch one of the black holes in the middle to 

cast their vote. However, many punched hole number 2, trying to cast a vote for “All 

Gore”. By design however, the second hole referred to “Pat Buchanan”, the first name 

on the right. Bush won Florida (and Pat Buchanan had a surprisingly high score in 

this state) and subsequently won the country wise election. If only the design of the 

survey had been different we might have had a different world by now… 
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Surveying in all its forms 

We first consider some of the numerous forms in which surveys (or 

questionnaires) arrive. A questionnaire can be seen as a special case of a test. A 

survey comes from “to survey”, with a meaning of: “administration of a 

questionnaire, also called structured interview”, or “gathering information from 

statements of questioned persons, in answer to a problem formulated in advance”. 

We make a distinction between structured and open interviews. The first one has 

a predefined structure, while the second evolves as the surveying is carried out. 

Mostly, structured surveys are used in quantitative research, while open interviews are 

usually used in qualitative research. In this course we cover only structured interviews 

administered on paper or online. We distinguish the following types of surveys: 

 

• On paper vs. orally 

• On the telephone 

• CAPI & CATI (computer assisted personal interviewing & computer 

assisted telephonic interviewing 

• Group wise vs. individual 

• … 

 

More types exist, but the aim of our course is not to give a full overview of all the 

different methods. Issues of reliability and validity that we discussed in the previous 

sections will be central for any type of survey. 

When to use a survey 

When would you use a survey? Surveys can be useful whenever you want to 

gather data about attitudes, opinions, feelings, thoughts, knowledge, or behavioral 

tendencies. Surveys (basically an automated way of doing structured interviews) are 

often cheap, can be done quickly, and can be administered to large groups of people. 

As such they have advantages over personal interviews. However, they also have 

drawbacks: people might not always be able to properly recall the things you are 

asking for, and you might encounter non-response: some potential participants might 

not be willing to participate.  
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While surveys are cheap and easy, it is very important to consider that surveys 

might not always give you the correct answers. Non-response (as introduced above), 

might lead to selection bias: It might for example be the case that those who take 

drugs are unwilling to participate in a questionnaire about drugs, while those who 

don’t are willing. This would lead to a wrong estimate of the proportion of people 

who take drugs.  

However, there are more troubling examples. LaPiere, in 1934, published an 

article on “attitudes versus actions”. LaPiere spend two years traveling the USA with 

together with a Chinese couple and visited 251 hotels. They were turned away once 

during the trip. However, after the trip LaPiere surveyed the same hotels and asked 

whether or not they would admit people of Chinese race: 128 of the hotels responded 

and 92% answered “No”. LaPiere thus showed that the attitudes (no admit Chinese 

people) were very distinct from the actual behavior. This signifies that surveys are not 

a good way to measure future behavior. 

At a different level surveys might also be cumbersome: the order of questions, the 

design of the survey, and the surrounding context might all influence the responses of 

participants. Dan Arielly for example examined how people respond to the following 

question: 

 

“What percentage of Afrikan nations is part of the United Nations? Is this more 

or less then 10%?” 

 

Most of the participants answered “more”, and the participants were subsequently 

asked to estimate the percentage. The average estimate was 25%.  

Dan Arielly than asked a similar question to another group of participants: 

 

“What percentage of Afrikan nations is part of the United Nations? Is this more 

or less then 60%?” 

 

Now, most of the participants answered “less”. The average estimate however was 

45%! The wording and framing of the question thus had a big effect on people’s 

answers! 

Each time you create a questionnaire you will have to think about possible 

difficulties. Remember that many of us are unable to recall what color socks they 
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where wearing last week: so recall of many detailed things is likely to be wrong. All 

of these issues will be in play when designing a questionnaire. In the final section of 

this chapter I will give a number of “rules of thumb” for good questionnaire 

construction. These you should always try to adhere to. However, for now remember 

that surveys, while easy and cheap, will not always lead to the correct answers. 

Before discussing the “rules of thumb”, we will first discuss a number of formal 

ways to create scales (measures of a predefined psychological construct).  

Formal scale construction 

The psychological literature has been concerned with formal methods to create 

psychological scales. These methods can be (loosely) distinguished based on the 

following criteria: 

 

• The goal of the construction method 

• The method of item construction 

• The method of scale construction 

• The overall judgment of the scale 

 

The psychological literature distinguishes the following six methods: 

 

1. The Rational method: The rational method is aimed to optimize the 

impression of the scale when evaluated by experts (face validity). Experts 

are used to create the individual items (based on their expertise) and 

experts put together the items to make the scale. Often reliability analysis 

will be used ad-hoc, but the primary means by which the scales are made 

is by the judgment of experts. This method is often used, but it is very 

informal and gives little guarantees of reliability and validity. 

2. The Prototypical method: The aim of the prototypical method is to 

represent the central elements of the construct one tries to measure well in 

the final scale. Items are often generated by respondents and selected 

through “act-nomination”: the respondents self-select the items they feel 

are part of the construct. Experts who put together the items suggested by 

participants construct the scale. Usually, common measures for reliability 

and validity are used to evaluate the scale. 
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3. The Internal method: The internal method has the aim of creating an 

item set with very high reliability. There is generally no theoretical 

background, and items can be created in all kinds of ways (experts, 

respondents, etc.). However, the scale is created using reliability and factor 

analysis (which we will cover later). Items that are unreliable are deleted. 

This is often used, but because of a lack of theory it often leads to a set of 

very homogeneous items: these are likely to correlate high and thus be 

reliable. The validity might however not be very good. 

4. The External method: The external method aims to optimize the criterion 

oriented validity. Items can be created in all kinds of ways, but they are 

selected for inclusion based on their correlation with some criterion. All 

kinds of items could correlate high, and often the external method thus 

leads to a very diverse (heterogeneous) set of items. The reliability of these 

items might be low. 

5. The Construct method: The construct method aims to “optimize” the 

nomological network (which we discussed in the previous sections). Here, 

theory goes before any analysis, as apposed to the internal method. Items 

are created with the underlying constructs in mind, and are grouped into a 

scale accordingly. This is a very theory driven approach and hence only 

applicable if the theory is sufficiently developed. Divergence and 

convergence are specifically tested. 

6. The Facet method: The facet method aims to optimize content validity. 

There is no necessary theoretical background, although it is useful if 

theory is available. The facet method mainly sets itself apart by the use of 

“facets” for item construction: an anxiety scale might for example focus on 

facets of when, where, and what, leading to items like: 

a. “I am fearful when I hear a loud noise in a public place” 

b. I am fearful when I see a sudden movement in a public place 

c. I am … when I hear a loud noise when I am home 

d. I am … when I see a sudden movement when I am at home. 

This way each of the facets of the question can be interchanged. 

  

The most important thing to remember is that there are multiple, theoretically 

supported, ways of developing an item set and a final scale. Different aims will force 
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you to make different choices. There is no one single “best” way to create a scale. I 

can only recommend the following guidelines: 

 

• If possible, items should be tuned to / deducted from theory 

• Pay notice to the content validity (e.g. by facet method) 

• Evaluate items using reliability and validity as discussed earlier. 

 

Formulating items 

We now turn to the hard part: the actual formulation of items. Everybody thinks 

that he/she can formulate items just like that (à la rational method). This however is a 

very big misunderstanding. Formulating items in a good way is very difficult, maybe 

even impossible; there are no common rules, at most rules of thumb 

Why is it so difficult to formulate items? 

There are several reasons why item development is very difficult. We mentioned 

some in the introduction of this chapter, but here are a few more: 

• Respondents often fail to understand questions as intended 

• There is often a lack of effort, or interest, on the part of respondents 

• Respondents can be unwilling to admit to certain attitudes or behaviors 

• Respondent’s memory or comprehension processes can be hindered in the 

(often stressful) process of filling out a survey. 

• You, the interviewer might fail: e.g. you might have a tendency to change 

wording, etc. etc. 

• Respondents commonly misinterpret questions. Even the common words 

such as ‘usually’, ‘generally’, ‘people’, ‘children’, and  ‘weekday’, elicit a 

wide range of different interpretations (Belson, 1981) 

• Answers to earlier questions can affect respondents’ answers to later 

questions. 

• Respondents often answer questions even when it appears that they know 

very little about the topic 

• Cultural context often has an impact 

• Etc. etc. 
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There are a number of studies (besides LaPiere and Arielly) that clearly show 

possible difficulties: 

 

• Denning in 1944 showed that already after ten days, repeating a question 

about the age of a respondent might lead to different answers. 

• Marquis showed in 1970 that respondents often fail to represent all 

relevant medical conditions when asked for. 

• Respondents' attitudes, beliefs, opinions, habits, interests often seem to be 

extraordinarily unstable. 

• Opinions change, sometimes fast. For example, when asked in beginning 

and in the end of a survey answers on same question were different for 

17% of respondents (Gritching, 1986). 

•  Payne (1951) asked two groups of people the following question(s): 

 ‘Do you think the United States should allow public speeches against 

democracy?’ 

or: 

 ‘Do you think the United States should forbid public speeches against 

democracy?’ 

In the first case 62% thought these speeches should be allowed, in the 

second case 46% believed they should be allowed. 

 

These – and many other – demonstrations of variability of responses should make 

you critical of the outcomes of questionnaire studies. Small changes in wording of 

specific items often have a large effect, and there is no single good formulation of an 

item. However, guided by theory and our machinery of validity and reliability we can 

try to do as good a job as possible. And, we have a number of rules of thumb. 

Rules of thumb for item formulation 

Here I present a list of rules of thumb for item formulation. Make sure you 

understand each of them. And, if you ever design a survey by yourself, make sure to 

check each of them! So might sound very trivial, they are still often done wrong in 

real surveys. So, please do make sure to always check all of these! 

 

1. Respondents should be able to understand the meaning of all used words!  
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2. Use simple words: 

a. Wrong:  How do you like to recreate? 

b. Better: What do you like to do in your spare time? 

3. See to it that the interpretation is unambiguous: 

a. Wrong:  To my opinion, the ratio manager – subordinate is: 

b. Better: To my opinion, the communication about work-related 

business between manager and subordinate is: 

4. Be concrete: Refer to place and time, ask for quantities, dates or data 

a. Wrong: Do you like fruits? 

b. Better: Did you eat an apple yesterday? 

5. Avoid vague words. 

6. Try to avoid using ‘often’, ‘sometimes’, ‘regularly’, in the answer 

alternatives as well! 

a. Wrong: I am often willing to work on one project for a long time  

b. Better: I am willing to learn for an exam daily over the course 

of a month 

7. Avoid double questions, so do not use ‘and’ or ‘or’-questions: 

a. Wrong: Our team has a goal in which the vision, the assignment 

and the values of the team are clearly visible 

b. Wrong: The business and the costumers are the most important. 

Nevertheless I pay enough attention to the employees 

c. Better: I pay enough attention to my employees 

8. Avoid double negatives. 

9. Avoid not, no, nobody, nothing, never, etc. in question. 

a. Wrong: I have never seen nobody nowhere in Tilburg that does 

not wear neither red nor black jeans (a bit of exaggeration, I 

admit;) 

b. Wrong: I do not like to hitchhike on a holiday 

c. Better: I find hitchhiking on a holiday unpleasant 

d. Wrong: Whether you are a boy or a girl does not matter on our 

school 

e. Better: Boys and girls are treated in the same way on our 

school 
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10. Make short questions. If you need an introduction put it in a separate text 

box, not in the question itself. 

a. Wrong: When you have available at you school your own or a 

shared pc and you barely or never use this pc, what is your reason 

for that? 

b. Better: Only answer the next question when you have available 

on your school your own or a shared computer, but you barely or 

never use this computer. So, if you do not have available a 

computer on your school, you can skip this question. When you do 

have a computer on your school and you regularly use it, you can 

also skip this question. 

Why do you barely or never use the pc? 

11. Avoid suggestive questions: 

a. Wrong: Do you also have the well-known mensa-hunger feeling 

in the evening? 

b. Better: I find the portions that the mensa serves too small 

12. Do not assume prior knowledge: 

a. Wrong: The course content was well-constructed 

13. Write abbreviations in full: 

a. Wrong: Do you preserve old OS’s and programs?  

b. Better: Do you preserve old operating systems and programs? 

14. Create an equal number of indicative and contra-indicative questions, but 

without using negatives like ‘not’ 

a. Wrong: I do not go into subjects thoroughly 

b. Better: I attend to matters superficially 

15. Position the most important part of a question at the end: 

a. Wrong: I feel relaxed and full of confidence during exams 

b. Better: During exams I feel relaxed 

 

I hope this list helps when creating a scale yourself. However, a questionnaire 

does not just consist of items, it also concerns answers. Below the rules of thumb for 

creating answer alternatives. 
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Rules of thumb for formulating answer alternatives 

 

1. Make alternatives exhaustive 

a. Wrong: How long did you watch television yesterday? 

6 hours or more 

5 hours to less than 6 hours 

4 hours to less than 5 hours 

3 hours to less than 4 hours 

2 hours to less than 3 hours 

1 hours to less than 2 hours 

½ hour to less than 1 hour 

10 minutes to less than ½ hour 

 

Why is this wrong? Well, what if you watched less than 10 minutes… 

 

2. Make alternatives mutually exclusive 

a. Wrong: What did you think of surfing the internet? 

    Difficult  Fun  Not fun 

b. Better: Do you think surfing the internet was difficult? 

    No  Yes 

    Do you think surfing the internet was fun? 

    No  Yes 

  

  Why is this wrong? Well, what if you found it both difficult and fun? 

 

3. Use open-ended questions with caution. You should use these only if there 

is no other possibility, e.g. when you are really not sure about all answer 

alternatives. Open-ended questions are harder to process and analyze. 

However, open-ended (follow up) questions can help in the interpretation 

of deviant responses in close-end questions.  
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4. Ask for exact numbers, times, places. When the respondent knows the 

precise answer, you can better ask an open question, e.g. age, how many 

hours someone works per week, etc.  

 

5. Put all alternatives in logical order. Order alternatives from – to + or the 

other way around, but be consistent. 

a. Wrong: (1) Totally disagree, (2) Agree, (3) Disagree, (4) Totally 

agree, (5) Neutral 

 

6. Try not to use ‘do not know’. Only use ‘do not know’ for knowledge 

questions ‘do not know’, ‘not applicable’, ‘no answer’ categories are a 

treat to the rather-lazy-than-tired-people. However, do provide the option 

not to answer a question: you rather have a missing data point then an 

incorrect answer. 

 

7. Rather not use multiple categories. Multiple category questions are 

questions in which the respondent may answer multiple answer 

alternatives. The statistical analysis and content interpretation is a lot 

harder for multiple-answer questions than for single-answer questions 

 

8. Use the same alternatives for all items. If you need to switch answer 

alternatives makes this clear in the design of your survey. This makes it 

easier for respondent to answer questions and it minimizes errors made by 

respondent 

 

9. Consider the number of answer alternatives. The literature makes a 

distinction between bipolar (negative to positive items) and unipolar items 

(0 to ’many’). Bipolar questions that consist of an odd number of 

alternatives need to have a neutral middle and be symmetric. Bipolar 

questions that consist of an even number of alternatives need to be 

symmetric without a neutral middle and are considered “forced choice” 

questions since you cannot indicate the absolute midpoint. Research shows 

that scales with 5 answer categories often have the highest reliability. 

However, when asking about undesirable behavior it is often better to use 
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7 categories of which the two end-points are extreme: respondents are 

likely to avoid the extremes.  

 

Finally, a number of advantages and disadvantages of open versus close ended 

questions can be identified. Open ended questions: 

 

• Allow respondent to express themselves in their own words  

• Do not suggest answers 

• Avoids format effects 

• Allow identification of motivational influences and frames of references 

 

However, close ended questions: 

 

• Lead to answers can be meaningfully compared since respondents use 

same answer alternatives 

• Produce less variable answers 

• Require recognition instead of recall, which makes them much easier to 

answer  

• Are much easier to code and analyze 

 

Note that open ended questions, are often necessary in the early stages of the 

development of a questionnaire to develop appropriate close ended questions. 

 

Rules of thumb for scale design 

 Besides proper item construction and proper answer category construction, a lot 

can be done using a good layout. This is more of an art then a science, but please 

recall the very bad layout that lead to president Bush being elected: this is not trivial! 

A few general remarks can be made: 

 

• Make sure to separate visually the instruction texts and the actual 

questions 
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• Put multiple similar items (especially those with identical answer 

categories) together in blocks. For paper surveys this can be done using 

spacing, while for online surveys different blocks of questions can appear 

on different pages. 

• Make sure to use a table layout if you have multiple items with the same 

answer categories. This saves space, and makes it easy for respondents to 

link the answer categories together. 

• Provide clear headings when you move from one subject to the other. You 

have to take respondents by the hand and guide them through your survey. 

Again, for online surveys this can be done by using different pages. 

• Make the logic of questions clear: if you have conditional questions (e.g. 

“Only answer question 2 if you answered “Yes” to question 1” make sure 

that the condition is clear visually. For paper surveys you can use 

indentation and lines connecting the answer on one question to the follow 

up question. Online you can make surveys dynamic: question 2 will only 

be presented to respondents who answered “yes” to the first question and 

will not be displayed otherwise. 

 

Again, developing good questionnaires is an art, but one that can be trained by 

inspecting and critically evaluating existing questionnaires. In any case, make sure 

you always pre-test your survey: have a number of respondents who are in the target 

group of your research fill out the survey, and interview them afterwards. Ask them 

about things that were unclear and ask them to suggest changes. Do not use their data 

in the actual analysis: the pre-test is merely done to improve the survey! 

 

Concluding comments 

Creating a good survey, one that is sufficient in all aspects (reliability, validity, 

norms, item formulation, formulating alternatives, assessing procedure etc.). is a 

tremendous amount of work that can take many years. Often we will not have the 

time to develop and validate our own scales. Therefore, we should resort to validated 

scales that already exist in the literature if possible: always see if whatever you are 

trying to measure has been measured before. 
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On a final note, be aware of the fact that you can include “check” questions in 

your own survey. For example, you can ask specifically for social desirability: ‘Are 

you always honest?’, or ‘Do you always participate fully?’. Check questions are an 

active field of study, especially since monetary rewards can be obtained by filling out 

online surveys: Here, a computer might fill out your survey, and you want to screen 

such bogus data. This is an interesting topic of study, but we will not discuss it in 

detail. 

I hope the above rules of thumb – and the discussion of formal methods to create 

scales – will help you to create better surveys in the future. A great way to train 

yourself is to evaluate existing scales using the rules of thumb that are presented here. 
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Explorative Factor analysis (FA) 

We have focused on reliability and validity, and discussed the “art” of 

questionnaire construction. It is now time to dig into more sophisticated techniques to 

analyze questionnaires. We will first discuss so-called “Exploratory Factor Analysis”. 

This is a data-reduction technique: so it can be used to summarize data. The technique 

was introduced in 1904 by Spearman and is used widely in the social sciences, 

mathematics, and machine learning (well, in every field really). 

 During this course we will not dig into the actual mathematics behind factor 

analysis, but we will discuss exploratory factor analysis in two ways: First, we will 

discuss a very small numerical example and I will try to explain some basic intuition 

behind factor analysis. Second, we will discuss the major concepts involved in “real” 

factor analysis. Finally, we will explore how we can do factor analysis using SPSS, 

and I will discuss a number of extension of the initial intuition.  

Factor analysis will be useful when we measure multiple (sub)constructs. 

Exploratory factor analysis can be used to determine the number of “underlying” 

constructs measured by a set of items. These underlying constructs (or factors) can 

then be used to summarize the data. FA is a different technique than CT in order to 

summarize the scores on items in a smaller number of scores, each of which measures 

a certain concept. With CT we summarized items into a single (sum)score, with FA 

we can summarize items into multiple (weighted) factors: by doing this we can 

identify the multiple sub-constructs. 

The goal of factor analysis is to describe associations (correlations) between a 

(sometimes very large) number of observed variables by a smaller number of 

components / factors. Formally the technique aims to: 

 

• To explain as much as possible of the variance of the variables with the as 

few as possible number of factors / components (explained variance)  

 

• To reproduce as good as possible the correlation matrix with the as few as 

possible number of factors /components (reproduced correlation matrix) 
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Note that these two statements are identical. In the context of questionnaires the goal 

of FA is to assigning items to groups of items, each of which measures a (sub) 

concept. 

The literature distinguishes between explorative and confirmative factor analysis. 

With explorative factor analysis we explore how many sub constructs are measured 

by our item set. With confirmatory factor analysis we test an assumption about a 

specific number of sub constructs defined a-priori. We will discuss exploratory factor 

analysis first. 

 

In general, it is useful to set the notation of FA apart from CT, because it helps to 

introduce the notation that we will use throughout. With CT theory we looked at the 

reliability of items X1, …, XJ. (basically, this was based on the correlations between 

items). If the reliability was satisfactory, we would compute a linear combination of 

X1 to XJ by computing the sum score: X = X1 + X2 + … + XJ. We considered the sum 

score X the score of a respondent on that construct. X was thus a summary of X1 to 

XJ. 

We slightly change this view when we consider factor analysis. Here we explain 

the associations between items using (a smaller number of… – but we get to that) 

factors. We regard: 

 

 Xj = a1j F1 + a2j F2 + … + aKj FK
 

(1) 

 

In words, each item Xj is regarded as a linear combination of Factor scores F1, … FK, 

and their associated loadings a1j, … aKj. Graphically this looks like this: 
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I will give some intuition behind the derivation of the factors scores and the 

weights below. However, for now note that if we can write the score of an item as a 

linear combination (using a factor loading and a factor score): 

 

 Xj = a1j F1
 

(2) 

 

than we can also write the factor score as a linear combination of the item and a 

regression weight 

 

 F1 = b1j Xj
 

(3) 

 

and this will also hold for multiple items / factors. The scores on the factors can now 

be used to summarize the scores on the items. I will explain below how the 

summarization actually works, but for now note a) the notation, and b) the fact that 

the summary (the factor score) will not just be a sum score but rather a linear 

combination with weights that might be distinct from 1. Hence, not every item will be 

equally important in the final summary. 

Some intuition behind factor analysis 

 In this section I will give a small numerical example to give you some intuition 

behind factor analysis. This example is not exact: the factor scores and weights that I 

show are not computed the way they are actually computed by SPSS. However, it 

hopefully gives you some basic framework to think about factor analysis. And, it 

hopefully makes the notation introduced above more clear. Finally, I hope the 

example shows the reasoning behind factor analysis as a summarization technique. 

Suppose we collect a dataset of 5 persons who each answered 3 items, each on a 5 

point scale. The data looks as follows: 

 

ID	   X1	   X2	   X3	  
1	   2	   2	   3	  
2	   3	   4	   2	  
3	   4	   4	   1	  
4	   5	   5	   3	  
5	   4	   4	   3	  
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We are now asked to summarize this dataset. One thing we should obviously do is 

look at the correlations: The correlation between X1 and X2 is .92, the correlation 

between X1 and X3 is -.15, and the correlation between X2 and X3 is -.05. This should 

already highlight to you that X1 and X2 seem to measure the same thing (high 

correlation), while X3 measures something else (low correlation with X1 and X2). 

Hence, a good summary of the above dataset would probably need 2 factors (one for 

X1 and X2, and one for X3). 

This is exactly what factor analysis will tell us. By rewriting the score on X1, …, 

XJ to factor scores we can start summarizing the dataset. Here is a possible factor 

solution: 

 

	  
X	  

	   	   	  
F	  

	   	   	   	  
A	  

	   	  ID	   X1	   X2	   X3	  
	  

F1	   F2	   F3	  
	   	  

F1	   F2	   F3	  
1	   2	   2	   3	  

	  
2	   3	   0	  

	  
x1	   1	   0	   0	  

2	   3	   4	   2	  
	  

3	   2	   1	  
	  

x2	   1	   0	   1	  
3	   4	   4	   1	  

	  
4	   1	   0	  

	  
x3	   0	   1	   0	  

4	   5	   5	   3	  
	  

5	   3	   0	  
	   	   	   	   	  5	   4	   4	   3	  

	  
4	   3	   0	  

	   	   	   	   	   

On the left are the measures scores for each individual, in the middle the factor scores 

F for each individual, and on the right a possible set of factor loadings (these are not 

the actual factor loadings, I am just using them to give you some intuition). The basic 

factor analysis trick is that we can reconstruct the X scores of each individual by their 

factor scores and the factor loadings. For example the score of person 1 on X1: 

 

X11 = a11 * F11 + a12 * F12 + a13 * F13 = 1*2 + 3*0 + 0*0 = 2 

 

Or the score of person 2 on x2: 

 

X22 = a21 * F21 + a22 *F22 + a23 * F23 = 1*3 + 0*2 + 1*1 = 4 

 

Note that this always works: we can always create a set of factor scores and factor 

loadings that perfectly reproduce all the actual scores. As long as we use as many 

factors as observed items we can fully reproduce the dataset. Also note that there are 
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infinitely many solutions to this decomposition: there are (infinite) combinations of 

factor loadings and factor scores that would allow you to recover the original dataset. 

By now you might wonder: “Well, that’s all nice and all, but how does this 

summarize my dataset?” Well, this is where the real factor analysis trick comes in: 

The factors are not just any decomposition, they are a very specific decomposition in 

which (informally) most of the information in the dataset is placed in the first factor, 

whatever is left in the second, whatever is left still in the third, and so on and so on. 

By the time the number of factors is equal to the number of items (J = K) the dataset 

will be reproduced perfectly. The trick however is to not use all the factor scores: K 

<< J.  

Lets recheck our example and compute, using the factor scores on only 2 of the 

factors the predicted scores on X, X’: 

 

F	  
	   	   	   	  

A	  
	   	   	  

X'	  
	   	  F1	   F2	   F3	  

	   	  
F1	   F2	   F3	  

	  
x1	   x2	   x3	  

2	   3	   x	  
	  

x1	   1	   0	   .	  
	  

2	   2	   3	  
3	   2	   x	  

	  
x2	   1	   0	   .	  

	  
3	   3	   2	  

4	   1	   x	  
	  

x3	   0	   1	   .	  
	  

4	   4	   1	  
5	   3	   x	  

	   	   	   	   	   	  
5	   5	   3	  

4	   3	   x	  
	   	   	   	   	   	  

4	   4	   3	  
 

The score of person 5 on item 3 is computed using 4 * 0 + 3 * 1 = 3 (underlined). 

If you look at the scores X’ and compare them to the original X table you will see that 

we have managed to replicate it in full, but for the score of person 2 on X2 (in red). 

So, we have now used only 2 factors (instead of 3 items), and we can summarize – 

almost perfectly – our dataset! This can be done because X1 and X2 have a very high 

correlation. This is the basic trick behind factor analysis as a summary tool. 

By the way, I hope you also notice that if you look at the factor loadings, A, you 

see that F1 has a loading of 1 for both X1 and X2, while factor three has a loading of 1 

for X3 and zero’s otherwise. This is the first step to meaningful interpretation of factor 

analysis: F1 apparently explains both X1 and X2, and thus X1 and X2 measure a 

common construct. X3 measures something else, and this is explained by F2. 

 

This was a very informal description of factor analysis as a summarization 

technique. I hope this gives you some intuition. Things to remember are: 
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• If we use as many factors K as items J (K = J) then we can fully recreate 

our dataset. Always. 

 

• Once we select a number of factors K smaller then J (K < J) we can use 

factor analysis to summarize our data. 

 

• Summarization works because items are correlated. If all the items J are 

uncorrelated factor analysis will not be able to summarize the data well. 

 

• Factor analysis allows you to see “blocks” of correlated items. You can see 

which blocks of items go together by looking at the factor loadings (as 

presented in A). 

 

All of this was clear in the example. From here onwards the example breaks down 

because the decomposition that I choose to make factor analysis intuitive is not the 

actual one used by factor analysis. The actual factor solution based on the example 

data (before rotation – but we will get to that topic later) looks like this: 

 

F	  
	   	   	   	  

A	  
	   	  F1	   F2	   F3	  

	   	  
F1	   F2	   F3	  

-‐2,49	   0,39	   0,14	  
	   	  

0,69	   0,16	   0,70	  
-‐0,19	   -‐0,58	   -‐0,52	  

	   	  
0,70	   0,00	   -‐0,70	  

0,68	   -‐1,65	   0,27	  
	   	  

-‐0,15	   0,98	   0,00	  
1,70	   1,02	   0,03	  

	   	   	   	   	  0,30	   0,81	   0,07	  
	   	   	   	   	   

You will not need to know how to compute these. However, here you can see the 

same things: X1 and X2 are well explained by F1 (high factor loadings, underlined in 

the left table), while X3 is explained by F2 (red).  

However, you will not be able to re-compute the actual X-values based on this 

because of a number of differences with the example: 

 

• Actual factor analysis is done on standardized scores 
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• The aim is to recreate the covariance matrix (since once we have 

standardized the scores the actual raw score does not matter anymore, we 

only care about the differences and similarities in scores (the variances and 

covariances). 

 

• Again, the aim of factor analysis is: To explain as much as possible of the 

variance of the variables with the as few as possible number of factors / 

components (explained variance) 

 

So, what we attempt to summarize using factor analysis are not the raw scores. 

We try to summarize the covariance matrix. We thus do not talk about reproduced 

scores (as we did in the first example) but rather about the reproduced correlation 

matrix (which are standardized covariances). We will now discuss the things you need 

to know about factor analysis, before digging into how its done in SPSS. 

Concepts of factor analysis that you should know. 

Here is a list of the most important concepts of factor analysis and their 

interpretation. You need to know these to be able to understand the SPSS output: 

 

• The “component (or factor) matrix” which contains the component (or 

factor) loadings. This is analogues to A in our example and contains the 

loadings ajk. It is often called the component matrix because Principal 

Component Analysis (PCA) is a special case of Factor analysis where the 

factors are usually referred to as components. We will discuss PCA and 

Principal Axis Factoring (PAF, another method of factor analysis). 

However, we will first stick to doing PCA in SPSS. 

 

• The “communalities” which are denoted hj
2. This a descriptive statistic of 

the factor solution. Note that communalities are indexed by j, and thus say 

something about the item Xj. The communality is the part of the variance 

in Xj that is explained by the factor solution F. Note that if K = J, than hj
2

 

= 1. If K < J and thus the factor solution summarizes the data, then hj2 is 

general smaller then 1. 
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• The unicity denoted bj
2. This is very simple, and its just 1 – hj

2: it is the 

part of the variance in Xj that is not explained by the factor solution. 

 

• The eigenvalue denoted λk. This is indexed using a k, and thus is a 

property of factor Fk. It quantifies the variance – out of the total variance – 

that is explained by factor k. Note that since the X scores are standardized 

the total variance that can be explained is J (J items times 1). The factor 

solution (or the decomposition) always has the following property λ1 > λ2 

> λ3 > λ4 …. > λk. This is the formal description of the fact that was stated 

in the example: the first factor contains most of the information (and thus 

explains most of the variance), then the second, then the third, etc. 

 

• Once you know the eigenvalue λk it is easy to compute the proportion of 

variance explained by a factor. Suppose we have a set of 6 items (J=6), 

and the eigenvalue of the first factor is 3 (λ1 = 3), then the first factor 

explains 50% of the variance. (3 out of a total of 6). 

 

• Similarly, we can quantify the proportion of variance explained by the 

factor solution. Here we sum the eigenvalues of the factors we end up 

selecting (e.g. λ1 + λ2 + …), and then see how much of the total variance is 

explained by these factors together. Suppose λ1 = 3 and λ2 = 1.5 when we 

summarize a dataset of 6 items (J=6) into 2 factors. The total variance 

explained by the factor solution then is (3+1.5) / 6 => 75%. Note that if 

you choose as many factors as items (J = K), then the sum of eigenvalues 

,λ1 + λ2 + … + λk, will be J, and 100% of the variance will be explained. 

 

• When we select a factor solution, we can also look at the reproduced 

correlation matrix. As we did in the example, we can reconstruct, based on 

the factor solution, the old scores. Since factor analysis concerns 

standardized scores, all of the information is captured in the correlation 

matrix. Thus, we can reproduce the correlation matrix. If J = K, then we 

can perfectly reproduce the correlation matrix. If K < J, than we are 

summarizing the data and likely we will not fully reproduce all the 
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correlations. We can compare the observed correlations with the 

reproduced correlations to see if our factor solution (our summary of the 

data) represents the data well. 

 

• The residual correlation matrix is a more formal way of looking at the 

difference between the observed correlations and the reproduced 

correlations: it is the difference between the two. So, the residual 

correlation matrix contains in each cell the difference between the actual 

observed correlation and the reproduced correlation based on the factor 

solution. 

 

The current section might have raised some question: I have presented a number 

of things you have not yet encountered. And, you might have open questions such as: 

“How many factors should I use to summarize my data?” and “How do I interpret the 

factor solution?”. We will cover all of these, and more, by thoroughly discussing an 

example of a factor analysis in SPSS. 

Factor analysis in SPSS 

The dataset we use for this example concerns 300 individuals who all filled out 6 

items (thus, J=6). Here is the correlation matrix of the items: 

 

 
We can now try to use factor analysis to reduce the 6 items into a smaller set of 

factors,  K < J.  

Note that if you look at the correlation matrix you see that X1 to X3 seem to 

correlate high, r > .4, and the same is true for X4 to X6. However, these two “blocks” 

have a low correlation with each other, r ~ .3. This should already indicate to you that 

this dataset might be summarized using two factors: one for items X1 to X3, and one 

Correlation Matrix

1.000 .449 .443 .296 .314 .326
.449 1.000 .446 .312 .264 .250
.443 .446 1.000 .279 .258 .282
.296 .312 .279 1.000 .467 .516
.314 .264 .258 .467 1.000 .497
.326 .250 .282 .516 .497 1.000

X1
X2
X3
X4
X5
X6

Correlation
X1 X2 X3 X4 X5 X6



 81 

for X4 to X6. It might not always be easy to actually see such a structure from a 

correlation matrix, but it always is a good idea to check this. 

 

The output of a factor analysis (PCA) 

We now run a factor analysis (PCA) on this data using SPSS. In the practical you 

will see exactly how to do this yourself. One of the most important outcomes of the 

factor analysis is the following table: 

 

 
 

This table shows (under “Initial Eigenvalues”) the eigenvalues of the factors using 

the mathematical decomposition in which most of the variance is explained by the 

first factor, then by the second, then by the third, etc. It is clear that indeed the 

eigenvalues go down: 2.801 > 1.081 > .578, etc. etc. Note that if you add all the 

eigenvalues of the 6 factors (and thus when K = J), the sum is equal to 6. This means 

you explain all of the variance in the items when you use a 6 factor solution. 

The percentage of variance explained by the factor can be found in the % of 

variance column, and you can see there that the second factor explains 18.015% of 

the total variance. The cumulative % column shows how much variance is explained 

by a factor solution of size k: if you would choose 3 factors, then you would explain 

74.354% of the variance. 

 

Interpreting the 1 and 2 factor solutions 

The table above – while columns 2 to 4 give you the eigenvalues for all the 

possible factors – is actually the output produced by SPSS when you select only 1 

factor to summarize the data. This is why only for “component” 1 the last three 

Total Variance Explained

2,802 46,700 46,700 2,802 46,700 46,700
1,081 18,015 64,715

,578 9,639 74,354
,560 9,335 83,690
,522 8,693 92,382
,457 7,618 100,000

Component
1
2
3
4
5
6

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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columns are filled out. In the next section we will discuss how many factors you 

should choose, but let us first try to understand all of the output when we select a 

single factor. 

 

When we only select a single factor our model is very simple: 

 

Xj = aj1F1 

 

Thus, the score on a single factor F1, and the factor loading aj1 summarize each item 

Xj. The factor score is itself the linear combination of the items (F1 = b11X1 + … + 

b61X6) that explains most of the variance in X1 to X6. Or, equivalently, it is the single 

linear combination that reproduces the correlation matrix best. SPSS will give you a 

table containing the factor loadings (the aj1) for the single factor solution: 

 

 
Note that, for the simple one factor solution (we will add more complexities later), 

these factor loadings equal the correlation between the item and the factor. Thus: rX1F1 

= a11 = 0.687. 

Also note that this table allows you to compute the communalities and the 

unicities: 

 

• De communality hj
2 of Xj is that part of the variance of Xj that is explained by 

F: hj
2 = rXjF

2  = aj1
2. For example: h1

2 = a11
2= (0.687)2 = 0.472. 

 

Component Matrixa

,687
,654
,651
,708
,688
,710

X1
X2
X3
X4
X5
X6

1

Compone
nt

Extraction Method: Principal Component Analysis.
1 components extracted.a. 
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• De unicity bj
2 (unexplained variance) of Xj is that part of the variance of Xj that 

is not explained by F: bj
2 = 1- hj

2. For example: b1
2 = 1- h1

2  = 1 – 0.472 = 

0.528. 

 

Both of these tell you something about the “fit” of the factor solution. In this case 

all of the items seem to be equally “important” on the factor (the factor loadings are 

all very similar), and the variance explained in the items by the single factor solution 

do not differ a lot. 

SPSS will also give you the reproduced and residual correlation matrix: 

 

 
 

This you can use to see how well specific relations between the items are 

reproduced. Apparently the relationship between X1 and X2 is reproduced perfectly by 

the factor solution: the residual correlation in 0. However, the reproduced correlation 

of .488 between X1 and X6 is apparently not very correct: it is -.162 off form the 

observed correlation. 

The reproduced correlation between two variables when you use a simple one-

factor solution is equal to the product of the component loadings of these variables on 

the component F1. For example: r12 = a11*a21 = 0.687*0.654 = 0.450 

The residual correlation is the difference between the data and the prediction: For 

example: The residual correlation  r12 = 0.449-0.450 = 0.000. 

Reproduced Correlations

,472b ,450 ,447 ,487 ,473 ,488
,450 ,428b ,426 ,463 ,450 ,464
,447 ,426 ,423b ,461 ,448 ,462
,487 ,463 ,461 ,502b ,487 ,503
,473 ,450 ,448 ,487 ,473b ,488
,488 ,464 ,462 ,503 ,488 ,504b

,000 -,004 -,191 -,159 -,162
,000 ,021 -,152 -,186 -,214

-,004 ,021 -,181 -,189 -,179
-,191 -,152 -,181 -,021 ,014
-,159 -,186 -,189 -,021 ,009
-,162 -,214 -,179 ,014 ,009

X1
X2
X3
X4
X5
X6
X1
X2
X3
X4
X5
X6

Reproduced Correlation

Residuala

X1 X2 X3 X4 X5 X6

Extraction Method: Principal Component Analysis.
Residuals are computed between observed and reproduced correlations. There are 9 (60,0%)
nonredundant residuals with absolute values greater than 0.05.

a. 

Reproduced communalitiesb. 
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Finally, notice that on the diagonal of the reproduced correlation matrix you find 

the communalities.  

 

This is all the output you need to understand based on a simple 1 factor solution. 

(We will get to how many factors to select in a minute). Lets now explore a two factor 

solution for this same dataset. When selecting a second factor we compute a second 

linear combination of the items that explains as much as possible of the variance that 

is left after the variance explained by the first factor has been accounted for. The 

second factor is F2 = b12X1 + … + b62X6. The model now is extended: 

 

Xj = aj1F1 + aj2F2 

 

Thus, the scores on X1 to Xj are reproduced using two factor scores and their 

factor loadings.  

Note that the default decomposition provided by SPSS – recall that there are an 

infinite number of possible decompositions – has two properties: 

 

1. The solution is chosen so that factor one explains most of the variance, 

then 2, then 3 (this we had seen before). 

 

2. The solution is chose such that the factors are uncorrelated: thus RF1F2 = 0. 

 

When selecting a two-factor solution the total variance explained table looks like 

this: 

 
 

Total Variance Explained

2,802 46,700 46,700 2,802 46,700 46,700
1,081 18,015 64,715 1,081 18,015 64,715

,578 9,639 74,354
,560 9,335 83,690
,522 8,693 92,382
,457 7,618 100,000

Component
1
2
3
4
5
6

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Note that it is exactly the same as our previous version, but for the addition of the 

second component to the last three columns. 

SPSS will also give the new factor loadings for the 2 factor solution: 

 

 
 

Notice that the loadings on the first component have remained the same. The 

second component explains the variance and correlation that is not explained by the 

first component.  In this table the loading aj2 is equal to correlation between Xj and F2 

(rXjF2). For example: rX1F2 = a12 = 0.375 

We can again compute the communalities and unicities: 

 

• The communality hj
2 of Xj is that part of the variance of Xj that is explained 

by F1 and F2: hj
2 = rXjF1

2 + rXjF2
2 = aj1

2  + aj2
2. For example: h1

2 = a11
2 + a12

2 

= (0.687)2 + (0.375)2  = 0.613. Notice that more variance in X1 is 

explained using 2 factors then with the previous 1 factor solution. 

 

• The unicity bj
2 of Xj is the variance of Xj which is not explained by F1 and 

F2: bj
2 = 1- hj

2. For the first item this is 1 – 0.613 = 0.387 

 

You can also find the communalities directly in the SPSS output: 

 

Component Matrixa

,687 ,375
,654 ,467
,651 ,464
,708 -,385
,688 -,415
,710 -,432

X1
X2
X3
X4
X5
X6

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

Communalities

1,000 ,613
1,000 ,646
1,000 ,639
1,000 ,649
1,000 ,646
1,000 ,691

X1
X2
X3
X4
X5
X6

Initial Extraction

Extraction Method: Principal Component Analysis.
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The Eigenvalue λk, which we could get from the “total variance explained” table 

can also be computed. Recall that this is the total variance is explained factor k. For 

this second component that we have added, we can compute the eigenvalue using the 

factor loadings: 

 

λ2 = a12
2 + a22

2 + a32
2 + a42

2 + a52
2 + a62

2
 = 1.081 

 

This is easily seen since the squared loadings give you the variance explained in an 

item (e.g. a12
2 gives the variance explained in item 1 by factor 2). If you add all of 

these for a single factor then you obtain the total variance explained by that factor.  

 

How many factors? 

We have now examined a simple 1 and 2 factor solution and we have gotten 

acquainted with eigenvalues, communalities, and explained variance. However, there 

is an obvious question as to how many factors to select: If we select K = J factors we 

explain fully all the variance but we do not have a summary. If we select K << J then 

we might not capture all the variance well. So, how do we chose K? 

There are basically three rules for choosing K. One is a very dumb “rule of 

thumb”, the others make a bit more sense. The dumb rule is to choose K ≤ J/3. This 

basically states that you want each factor to (on average) at least summarize 3 items. 

However, there are smarter rules: 

 

• The Kaiser-Guttman rule: This rule states to choose the number of factors 

equal to the number of factors with an eigenvalue greater than 1. There is 

some sense to this rule: if the eigenvalue of a factor is higher then 1, then it 

explains more variance then a single item does (each item basically adds 1 

to the total variance that there is to explain). If the eigenvalue is lower then 

1 then the factor (informally) contains “less information” then a single 

item. Thus, it is not really a summary and you do not want to include it. In 

our example only F1 and F2 have an eigenvalue higher than 1. 
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• The second rule is also based on eigenvalues, and it is called Cattell’s 

scree test. It is done by looking at a plot of the eigenvalues: 

 
The plot shows the eigenvalue of each component. If you now take a ruler 

and draw a straight line through the lowest eigenvalues (3 to 6 in this 

case), then all the factors that have an eigenvalue higher than this line 

should be included. In this case you would thus select 2 factors. 

 

Rotation 

Now you know how to interpret a factor solution, and how to choose a number of 

factors. However, we have not really discussed any interpretation of the factor 

solution: how do we know what the factors summarize. This we can do by looking at 

the factor loadings: this will tell us which items relate strongly to which factor and 

thus will allow us to interpret the factor. However, the default mathematical solution 

that SPSS choses for factor analysis (with λ1 > λ2 > λ3 > λ4 …. > λk and RF1F2 = 0) is 

not always the simplest to interpret. It is mathematically the easiest to compute, but if 

we want a good interpretation we can look at different solutions (remember there is a 

theoretically infinite number of solutions!). We call the examination of different 

factor solutions rotation. Note that you first need to determine the number of items 

before you start rotating the solution for interpretation! 

You will need to understand 3 versions of a factor solution: 

 

1. The standard mathematical solution. This is the one we have just covered, 

so this one is tackled. 

 

Scree Plot

Component Number

654321

Eig
en

va
lue

3,0

2,5

2,0

1,5

1,0

,5

0,0
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2. The VARIMAX solution. This is a rotation method where the factors are 

still uncorrelated (thus RFmFn = 0) as in the mathematical solution. 

However the rotation tries to find a simple structure: if the items group 

together in 2 groups and you have selected 2 factors this solution will 

attempt to not put as much variance as possible in the first factor, than in 

the second but it will attempt to use 1 factor to explain one of the groups 

and the other factor to explain the other group. 

 

3. The OBLIMIN solution. This is a rotation method where alike VARIMAX 

the solution attempts to create a simple structure. However, additionally 

the assumption that the items are uncorrelated is relaxed: RFmFn ≠ 0. 

 

Before discussing rotation examples on the 6 item dataset that we have been using 

throughout this section it is useful to understand what you do when you rotate after 

choosing a number of factors. When you chose a number of factor you decide how 

much of the total variance you want to explain. After you have made this choice, you 

can redistribute the variance over the factors: you can add less variance to factor 1 and 

more to factor 2 to get to a solution that is easier to interpret. Suppose a 2 factor 

solution explains in total 60% of the variance, and factor 1, in the standard solution, 

explains 40%. You can now redistribute the variance over the factors (for example F1 

contains 32% and F2 contains 28%) to aid interpretation. Note that the total variance 

explained by the factors will not change if you rotate: this has been fixed after you 

decide on the number of factors. 

Lets continue our example and see how VARIMAX and OBLIMIN play out. The 

solution before rotation looked like this: 
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Here we see that factor 1 has only positive loadings, while factor 2 is used to split 

the two groups of items: recall that X1 to X3 correlate high, and X4 to X6 correlate 

high. Basically, in this solution F1 captures all the joint variance, and F2 makes the 

difference between the two “blocks” of items. The VARIMAX rotation looks like 

this: 

 

 
 

Here the variance is redistributed: Each (rotated) component now explains a 

different amount of variation in data: 1.989 and 1.895 vs. 2.802 and 1.081. This you 

can find in the “total variances explained” table. However, to understand what is 

happening have another look at the plot: Now items X1 to X3 score high on factor 2, 

and X4 to X6 score high on factor 1. Thus, we have restructured to solution to make it 

more interpretable! 

Component Matrixa

,687 ,375
,654 ,467
,651 ,464
,708 -,385
,688 -,415
,710 -,432

X1
X2
X3
X4
X5
X6

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

Component Plot

Component 1

1,0,50,0-,5-1,0

C
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1,0

,5

0,0

-,5

-1,0

x6x5x4

x3x2
x1

Rotated Component Matrixa

,241 ,745
,154 ,789
,153 ,784
,779 ,208
,785 ,171
,813 ,174

X1
X2
X3
X4
X5
X6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Component Plot in Rotated Space

Component 1

1,0,50,0-,5-1,0
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1,0

,5

0,0

-,5

-1,0

x6x5x4

x3x2x1
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You can now directly say that Factor 1 measures X4 to X6, while Factor 2 

measures X1 to X3. This is a much simpler structure. The factor loadings of a rotated 

solution are often used for interpretation.  

We can also formalize a simple structure: if each item loads on a single factor 

more than .3, and lower than .3 on the others then the structure is simple. Off course 

.3 is an arbitrary cut off, but it’s a useful rule of thumb. 

 

The OBLIMIN rotation looks like this: 

 

 
 

This is even simpler! To understand what the difference is take a look at this plot 

showing what the rotations actually do: 

 
 

With VARIMAX rotation (on the left), we try to rotate the axis so that they are close 

to the clusters of questions. With OBLIMIN (on the right), we do the same but we 

Pattern Matrixa

,076 ,747
-,030 ,816
-,030 ,812
,792 ,030
,808 -,010
,837 -,014

X1
X2
X3
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X5
X6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Oblimin with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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allow the factors to be correlated. Thus, the factors are not orthogonal anymore: they 

factors do not need to make a straight angle. VARIMAX is an orthogonal rotation 

since the correlations are set to 0. OBLIMIN is not orthogonal and the factors are 

allowed to correlate. 

Note that in this example OBLIMIN rotation gave the easiest solution. This is 

often the case, and it is often far-fetched to assume that factors are fully uncorrelated. 

Hence, I usually prefer the OBLIMIN solution. You should however know the 

differences between the two versions. If the correlation between the factors in the 

OBLIMIN solution is very low, you might settle for the easier VARIMAX solution. 

 

The table below gives on overview of the differences between OBLIMIN and 

VARIMAX (as compared to the standard mathematical solution): 

 

 VARIMAX OBLIMIN 
ajk different more different 
lk  different more different 

   hj
2 identical identical 

bj
2  identical identical 

   % expl.var.  identical identical 
Rprod identical identical 
Rres identical identical 

 

Note that while the factor loadings and the eigenvalues change, the explained 

variance in both the items as for the full solution do not change: with rotation we are 

merely redistributing the explained variance over the factors.  

Finally, lets be a bit more specific about the changes in ajk when we rotate. We 

had seen before that ajk = rXjFk : The factor loading ajk is equal to the correlation 

between item J and factor K. This is still true when rotating VARIMAX. The solution 

will change because of the rotation, but the interpretation is still the same. However, 

when we move to OBLIMIN, this is not anymore the case. Thus ajk (which is given in 

the “Pattern Matrix” in SPSS) ≠ rXjFk (which is given in the “Structure Matrix”). 
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To see why, we need to get back to the factor analysis model. Suppose we have a 

very simple 2 item, 2 factor solution. If we now look at the VARIMAX model (top of 

the figure below) and the OBLIMIN model (bottom) we can see the difference: 

 
 

In the second model there is a correlation of .3 between F1 and F2. This affects 

(like in path analysis) the relationship between F1 and X1, since a part of the 

relationship goes “via” F2. Because of the correlation introduced by OBLIMIN, we 

need to include this extra path when we compute the correlation between a factor and 

an item when we are looking at an OBLIMIN solution. 

 

PAF versus PCA 

The factor analysis we discussed above was an example of Principle Component 

Analysis (PCA). In this section we discuss a slightly different technique namely 

Principal Axis Factoring (PAF). Both are methods of exploratory factor analysis, and 

both aim to summarize a dataset. The SPSS output (and informal interpretation) of 

both methods is very similar. However, the underlying model is (very) different. Lets 

start with the differences (in the text the differences with PCA are in bold): 

In PAF Common factors F1, …, FK are Linear combinations of common parts 

X1
*, …, XJ

* of observed variables X1, …, XJ: 
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Fk = b1k X1
* + … + bJ kXJ

* 

 

b1k, …, bJk we again call the regression weights Similar, variables X1, …, XJ are 

regarded linear combinations of common factors F1, …, FK, plus an item specific 

unique factor Uj that represents a non-common part of Xj: 

 

Xj = a1j F1 + … + aKj FK + Uj 

 

Here a1j, …, aKj we again call factor loadings (not component loadings this time). 

Similar to PCA items and factors are standardized. However, the common and unique 

factors are latent as opposed to manifest as in PCA:  

 

 
 

The difference between the latent variable specification (PAF) and the manifest 

variable factor analysis (PCA) becomes most apparent when we split up the variances 

in X that we observe. We can identify variance that is shared between items, variance 

that is unique to specific items, and variance that is due to (measurement) error. PCA 

tries to explain all of the variance, while PAF tries to only explain the variance that is 

shared between the items.  
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While PCA was conducted on the correlation matrix between the items: 

 

1 r21 …….. r1J 

r12 1 …….. r2J 

…….. …….. …….. …….. 

rJ1 rJ2 …….. 1 

 

PAF is conducted on the reduced correlation matrix: 

 

h1
2* r21 …….. r1J 

r12 h2
2* …….. r2J 

…….. …….. …….. …….. 

rJ1 rJ2 …….. hJ
2* 

 

Here the entries on the diagonal are not 1 (which would be the correlation of an 

item with itself, but it includes all sources of variance) but rather the communalities of 

the items: the communalities are that part that could be explained by a factor solution 

and hence is the part of the items that is shared. The real difference in computation is 

thus that PCA is computed on the observed correlation matrix, while PAF used the 

reduced correlation matrix. In this way the variance of an item is split into shared 

variance (captured by the factor) and unique variance which is not captured by the 

factor solution. 

Those were the differences in the model behind PCA and PAF. To show the 

similarities it is easiest to look at the output of an SPSS PAF analysis on X1 to X6 that 

we used earlier. 

Lets first look at the “Total variance explained” table. Note that at the bottom of 

the table it now states that Principal Axis Factoring is used. Also note that in this new 

table the last 3 columns (5-7) differ from columns 2-4. This was not the case for PCA. 

Basically, on the left (columns 2-4), you find the PCA solution. This solution is then 

used for the PAF solution on the right (columns 5-7). Also note that the variance 

explained by the PAF solution is lower than that explained by the PCA solution: this 

is a logical result of the attempt to explain only the shared variance and not the full 

variance. 
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The factor loadings of a PAF solution are given in the Factor Matrix. As before, 

these factor loadings (if not rotated using OBLIMIN) give the correlation between a 

factor and an item.  

 

 
 

We can again compute the communalities using this output: hj
2 = rXjF1

2 + rXjF2
2 = 

aj1
2  + aj2

2 (For this specific example: h1
2=a11

2+a12
2 = (0.610)2 + (0.274)2 = 0.447). 

However, we can also look up the communalities in the SPSS output: 

 

 
 

Total Variance Explained

2.802 46.700 46.700 2.276 37.937 37.937
1.081 18.015 64.715 .554 9.228 47.165

.578 9.639 74.354

.560 9.335 83.690

.522 8.693 92.382

.457 7.618 100.000

Factor
1
2
3
4
5
6

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Axis Factoring.

Factor Matrixa

.610 .274

.583 .345

.575 .327

.642 -.261

.616 -.268

.665 -.337

X1
X2
X3
X4
X5
X6

1 2
Factor

Extraction Method: Principal Axis Factoring.
2 factors extracted. 10 iterations required.a. 

Communalities

.314 .447

.299 .458

.289 .437

.351 .480

.326 .451

.370 .555

X1
X2
X3
X4
X5
X6

Initial Extraction

Extraction Method: Principal Axis Factoring.
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And finally, as with PCA, we can look at the reproduced correlation matrix: 

 
 

In this example the residual correlations are very low, and thus the 2 factor model 

seems to summarize the data very well. However, the total explained variance of 

47.2% is pretty low. 

 

You might now wonder when to use PAF en when to use PCA. As is clear above, 

the output and interpretation are extremely similar. However, the theoretical ideas are 

pretty different. In practice, PCA is easier to compute and will work well as a data 

summary technique. PAF however is “superior” theoretically, and thus often preferred 

by social science researchers. All surrounding fields use PCA, the social sciences 

seem to like PAF. Differences in the end are minor. 

 

Assumptions explorative FA 

We have almost come to the end of the discussion of factor analysis.  To really 

understand the technique it is important that you practice a lot and try to interpret the 

output(s). However, before we move to the next topic it is important to discuss a) 

what the assumptions behind factor analysis are, and b) whey you should and should 

not use factor analysis. 

 

 

Reproduced Correlations

.447b .450 .440 .321 .303 .314

.450 .458b .448 .284 .267 .271

.440 .448 .437b .284 .266 .272

.321 .284 .284 .480b .465 .515

.303 .267 .266 .465 .451b .500

.314 .271 .272 .515 .500 .555b

-8.94E-04 2.588E-03 -2.51E-02 1.096E-02 1.250E-02
-8.94E-04 -1.45E-03 2.709E-02 -2.47E-03 -2.15E-02
2.588E-03 -1.45E-03 -4.46E-03 -7.93E-03 1.047E-02
-2.51E-02 2.709E-02 -4.46E-03 1.237E-03 1.683E-03
1.096E-02 -2.47E-03 -7.93E-03 1.237E-03 -2.56E-03
1.250E-02 -2.15E-02 1.047E-02 1.683E-03 -2.56E-03

X1
X2
X3
X4
X5
X6
X1
X2
X3
X4
X5
X6

Reproduced Correlation

Residuala

X1 X2 X3 X4 X5 X6

Extraction Method: Principal Axis Factoring.
Residuals are computed between observed and reproduced correlations. There are 0 (.0%)
nonredundant residuals with absolute values > 0.05.

a. 

Reproduced communalitiesb. 
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The assumptions: 

Factor analysis (both PAF and PCA) are computed using correlations. This 

implicitly assumes that correlations are a correct measure to quantify the relationship 

between the items. Thus, obviously, all of the concerns regarding correlations that we 

discussed earlier apply also to factor analysis: 

 

• We need an interval measurement level 

• The association should be linear 

• The distributions of variables should not be too different 

• There should be no influential outliers 

 

Thus, in practice, you will have to check whether or not these are actually true in 

your dataset. 

Less explicit are the following assumptions:  

 

• The relationship Xj on the one hand and F1, …, FK, Uj on the other hand, is 

linear: Xj = a1jF1 + … + aKjFK + ( bjUj ) 

 

• All unique factors U are uncorrelated: rUiUj = 0 for all variables i and j 

 

• All factors F are not correlated with the unique factors U rFkUj = 0 for all Fk 

and Uj 

 

Of which the last two only apply to PAF, since in PCA no unique part of the 

factors, U, is assumed. 

 

How would you check whether you can do a factor analysis on your data? 

Well, you can always perform a factor analysis. However, whether the results 

make sense and can be interpreted is something different. 

Obviously, if all the relationships between items are (e.g.) non-linear, then factor 

analysis will not work well: factor analysis assumes that correlations are a good 

measure to describe the associations between items. You can still run a factor 
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analysis, but its interpretation will be incorrect, and it will not summarize the data 

well. 

Researchers use some rules of thumb to see if the can perform factor analysis. 

Here are the most popular ones: 

 

• The number of observations that you have needs to be high: N ≥ 100 

 

• The number of observations that you have needs to be high compared to the 

number of items: N ≥ 5*J (if inter-item correlations are small than there 

should be at least 10 cases per item) 

 

• The items should be sufficiently correlated: 

o R must contain correlations that are in absolute value greater than 0,3 

(Pallant p.180-181) 

 

o Bartlett’s Test of Sphericity must be significant (p-value < 0,05) 

(Pallant p.180-181). This is a test of the overall correlation matrix. 

 

o KMO index must be greater than 0,6 (Pallant p.180-181). This is a 

summary of the correlation matrix 

 

In the end these are just rules of thumb. PCA is used in all kinds of fields, often 

without these assumptions (Facebook uses PCA to compress images). However, it is a 

custom in the social sciences to report Bartlett’s test and the KMO index. 
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Confirmatory Factor Analysis 

In the previous chapter we discussed exploratory factor analysis (we discussed 

PCA and PAF as two methods for exploratory factor analysis). With exploratory 

factor analysis you explore the data to see which items group together into a 

(sub)construct. Exploratory factor analysis can be used to summarize a dataset and 

interpret possible clusters of items 

However, often you might know explicitly the structure of your scale. You might 

know in advance that items X1, … , X10 are supposed to measure extraversion, while 

items X11, …, X20 measure agreeableness. You thus have a very specific hypothesis 

about the structure of your constructs. If this is the case then you can use confirmatory 

factor analysis to formally test you assumptions. Here factor analysis is not used to 

explore the dataset and see which groupings emerge, but rather it is used to test 

directly a structure that is known in advance. 

We will discuss two methods of confirmatory factor analysis: the Multi Group-

Method (MGM) and Structural Equation Models (SEM). The first is an informal 

method but it nicely demonstrates the general idea of confirmatory factor analysis and 

links this technique explicitly to reliability as defined in classical test theory. The 

second (SEM) is a formal and very general way of evaluating known structure in a 

dataset: it can be used for applications that reach far beyond confirmatory factor 

analysis. We will discuss some of the basic concepts of SEM, but we will not cover 

all the details: for this you should attend a different course. 

Multiple Group-method (MGM) 

Lets start with the Multiple Group-Method. The multiple group method is based 

on the idea that for each (sub) construct you can group the items using classical test 

theory (e.g. compute cronbach’s alpha, and than compute sum scores). Once we have 

done this we can evaluate whether our assumptions hold by seeing whether: 

 

1. Items that belong to a specific scale indeed correlate highly with that scale 

(recall convergence, alpha if item deleted, and the corrected item total 

correlation) 
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2. Items correlate higher with their own scale then with other scales. If this is 

not the case then the item might actually “belong” to the other scale and 

your assumption about the structure is rejected. 

3. Items correlate higher with their own scale than scales correlate with each 

other. This is a measure for divergence. 

 

Let’s do a practical example. We will continue with the 6-item dataset introduced 

as an example for exploratory factor analysis. The correlation matrix looked like this: 

 

 
 

Now let us assume that we knew a-prior (in advance) that items X1 to X3 

measured one concept, and X4 to X6 measured another concept. Thus the 6 items form 

to (sub) scales (or measure two (sub) constructs). 

 

The first requirement for MGM is that the scales themselves are good scales, as 

evaluated using the skills we learned when discussing reliability analysis. Lets check: 

 

Scale X(I): α = 0.704 

 X1 X2 X3 

corrected item-total correlation 0.5244 0.5268 0.5233 

α if item deleted 0.6153 0.6111 0.6197 

 

For this scale α is good, the correlations > 0,3, and α decreases if one item is 

deleted. According to classical test theory this scale is good. 

 

  

Correlation Matrix

1.000 .449 .443 .296 .314 .326
.449 1.000 .446 .312 .264 .250
.443 .446 1.000 .279 .258 .282
.296 .312 .279 1.000 .467 .516
.314 .264 .258 .467 1.000 .497
.326 .250 .282 .516 .497 1.000

X1
X2
X3
X4
X5
X6

Correlation
X1 X2 X3 X4 X5 X6
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Scale X(II): α = 0.7448 

 

 X4 X5 X6 

corrected item-total correlation 0.5688 0.5533 0.5920 

α if item deleted 0.6634 0.6811 0.6354 

 

For the second scale α is also good, correlations > 0,3, and α decreases if one item 

is deleted. According to classical test theory this scale is also good. 

These two analyses jointly satisfy requirement 1 of the MGM method. 

 

The second analysis concerns the correlations of the items with their own scale. 

Thus, we compute a sum score for X1 to X3 which we will call X(I), the first scale. We 

also compute a sum score for X4 to X6, which we will call X(II), the second scale. Now 

lets look at the correlations (these are the corrected item total correlations): 

 

 X(I) X(II) 

X1 0.524 0.383 

X2 0.527 0.338 

X3 0.523 0.336 

X4 0.373 0.569 

X5 0.352 0.553 

X6 0.361 0.592 

 

We can see that indeed the correlations of items with their own scale is higher 

than the correlation of items with the other scale. This satisfies the second 

requirement. 

 

For the third requirement we look at the correlation between the scales: 

 

rX(I),X(II) = 0.445 

 

This is quire a high correlation, so the two constructs (or scales) are apparently 

correlated. This might be realistic. However, we should compare the correlation of the 
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scales with the corrected item total correlation of the items with the scales to check 

the assumption. Here we see that X1 to X3 indeed correlate higher with X(I) than the 

the correlation between the scales, and the same is true for X4 to X6 and X(II). Thus, 

the third requirement is also satisfied. 

 

This concludes the MGM procedure. We can conclude that we have confirmed 

our hypothesized structure. If this would not be the case, we might use explorative 

factor analysis to inform new hypothesis. However, if we want to formally test (e.g. 

get a p-value etc.) of the hypothesized structure we need more than MGM: we move 

over to SEM. 

Structural Equation Models (SEM). 

 

SEM provides a statistical framework for conducting Confirmatory Factor 

Analysis and other more complex analyses. SEM is also referred to as the analysis of 

covariance structures. Basically what the method does is check whether the observed 

data is likely to occur given a pre-specified covariance matrix. The basic steps of a 

SEM analysis are the description of a covariance structure by the researcher, followed 

by a test of the fit of the data to this structure. The fit is evaluated using specific 

“goodness of fit” indices such as Chi-square, the likelihood ration, or information 

criteria such as AIC and BIC. We will dig into these later. 

SEM is a method that is much broader than just confirmatory factor analysis. 

Many methods that you are used to can be thought of as a special case of a SEM 

analysis. SPSS will allow you to do some SEM analysis, while specialized computer 

packages such as Lisrel and AMOS will allow for more applications of SEM. If you 

are familiar with Path-models, you can think of SEM as a generalization of Path 

modeling. SEM aims to explain linear dependencies between variables: this is exactly 

what is described in the covariance matrix. 

SEM is powerful, but also dangerous: you need to understand very well what you 

are doing when interpreting SEM models. It is very easy to have SPSS or AMOS do 

its computations and derive the wrong conclusions. Thus, if you are unsure about your 

SEM analysis, always consult an expert. SEM is general, super useful, but also non 

trivial. 
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SEM, basic concepts 

Let us start with some basic notation and concepts behind SEM models (also 

called structural models). Again, SEM models concern the analysis of a covariance 

matrix. However, the relations specified in a covariance matrix can also be specified 

using a graphical model. A SEM model might look like this: 

 
The following parts can be identified: 

 

• The manifest variables (squares). These are variables that you have 

observed directly (Z1, Z2, Y1, X1, …, X4). 

• The latent variables (circles). These are variables that are not directly 

observed (F1, F2, F3). Latent variables can be split into: 

o Endogenous latent variable and exogenous latent variables. The 

endogenous latent variables are “predicted by the model” and have 

an arrow pointing towards them (F1 and F3). These variables are 

presented together with their error component ζF 

o Exogenous latent variables: those latent variables that are not 

predicted by the model (have no error pointing towards them: F2). 

These latent variables do not have an error component. 
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Often, a distinction is made between the measurement model, and the latent 

variable model. The measurement model can be compared to the factor analysis part: 

it specifies (e.g.) how X1 to X4 are used to measure F3. The latent variable model 

specifies the relationships between the latent variables F1, F2, and F3. These are the 

regressions from one latent variable to the other. These can be mixed in a SEM 

model, and not all SEM models contain both components. 

In the figure the latent variable model(s) are: 

 

F1 = β1 F2 + ζF1 

F3 = β2 F2 + β3 F1 + ζF3 

 

Where F1, F2, F3 are latent variables (circles), β1, β2, β3 are the effects between 

the latent variables, and ζF1, ζF3 are the prediction errors.  

Every latent variable is measured using several manifest variables: X1, X2, X3, X4 

measure F3, Y1 measures F2, and Z1, Z2 measure F1. Indicated by λ1, …, λ7 are the 

effects of the manifest variables on their latent variables. The E’s indicate the 

measurement errors of the manifest variables. 

So far for the jargon. 

Applications of SEM models 

As introduced, SEM models are a very general tool, and actually capture a number 

of the things you have covered in previous courses. Some specific SEM models you 

can fit in SPSS, for some you need more specialized software. Some examples: 

 

Linear regression can be thought of as a special case of SEM. For example: 
 

r13  
= 

,404 

Feduc (x1) 

Educ (x3) 

Fisei (x2) Isei (x4) 

e4 

r12 = 0,635
   

r23 = 0,325 

β
41 =0,077 

β
42 =0,196 

β
43 =0,502 

β
4e4=0,768 

R2=41,0 % 
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Here all of the variables are manifest (and there is no separate measurement 

model). This you can easily compute using SPSS. (Note that the β’s in this linear 

regression example above have nothing to do with the β’s in the earlier latent variable 

model.) 

 

Exploratory factor analysis (and off course confirmatory factor analysis – that is 

why we are discussing SEM anyway) can be thought of as a SEM model. In this case, 

the SEM model only contains a measurement model. The following is a PAF model: 

 

 
While we can fit this model (explorative) in SPSS, SPSS will not allow you to 

specifically test a specific model. The difference is that with a specific model you 

(manually) set some relations to be present (eg. F1 -> X1), and some to be absent (eg 

F1 -> X10. SPSS will assume all the relations are present. 

Some models / methods that you have encountered are not special cases of SEM 

models. Logistic regression for example, is not a SEM model since the SEM 

assumption of normally distributed errors is not valid for logistic models.  

Note that SEM models rely on analyzing the covariance structure of the matrix. 

Thus, all the caveats we have discussed for factor analysis models apply: There needs 

to be a linear association between items (and items and factors), and you need a 

sufficiently large N (e.g. N > 100, or N > 5*J). 
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Confirmatory factor analysis using SEM. 

We will now discuss a confirmatory factor analysis model that is fit using AMOS. 

This is to give you some insight in how this is done, and we will discuss the goodness 

of fit indeces that are most often used to evaluate models. We will also discuss how 

you would compare competing models. Since we are not going to cover a new 

software package, we will stick to the interpretation, and we will in this course not 

cover how you would actually run a model yourself. I just hope this discussion makes 

that you can at least read papers that use SEM for confirmatory factor analysis, and 

that you can be critical of their interpretation. 

 

So, lets do an example of confirmatory factor analysis using X1 to X6 that we have 

used before. We are going to assume that X1 to X3 represent one latent construct, and 

that X4 to X6 represent a second latent construct. Graphically this model looks like 

this: 

 

 
 

The model states that two latent factors underly the 6 manifest items. Each item has 

its own unique variance component (PAF), and there is a correlation between the 

factors (recall OBLIMIN rotation). The structural equation of this model are: 
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X1 = a1 F1 + U1  X4 = a4 F2 + U4 

X2 = a2 F1 + U2  X5 = a5 F2 + U5 

X3 = a3 F1 + U3  X6 = a6 F2 + U6 

 

The next step in a SEM analysis is to check the fit of the model. In general the aim 

is to specify a model that is simple, but still has a good fit. One measure for fit is chi 

square, χ2, which is easier to remember as a measure of misfit: the higher the value of 

χ2 the worse is the model fit. 

A measure for complexity is the “degrees of freedom” of model (often df). The 

larger the degrees of freedom, the simpler the model. So, we should look for models 

with a low χ2 value, and a high number of degrees of freedom. 

The value of χ2 you can see in the output of most statistical packages for SEM 

analysis. The df however you can easily compute yourself for confirmatory factor 

analysis. It is a function of the true underlying complexity, and the complexity of the 

model that you are fitting.  

The true underlying complexity is given by the number of unique elements in the 

covariance matrix of manifest variables. In our example we have 6 manifest items. 

The covariance matrix thus contains 6*6=36 entries. However, COV(X1, X2) = 

COV(X2, X1), so we have less unique elements. The number of unique elements is 

given by: 

 

Unique elements of J*J COV matrix = J (J+1) / 2 

 

In our example this is 6*7 / 2 = 21. 

The model complexity is given by the number of parameters of the model. These 

are basically all the arrows in the model. For our example we have 3 arrows from F1 

to X1,…,X3, plus 3 arrows from F2 to X4, …, X6. Furthermore we have 6 arrows for 

the item unique parts, and we have 1 correlation. Thus: 

 

 6 (factors to items) + 6 (unique variances) + 1 (correlation) = 13 
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The degrees of freedom in the example now is given by: 

 

Df  = true complexity – model complexity = 21 – 13 = 8 

 

Note that if df = 0, than the model fit will be perfect: we are not reducing the data 

in any way. From AMOS we can get the following output: 

Chi-square = 3.817 

Degrees of freedom = 8 

Probability level = 0.873 

 

This we can use to do a χ2 test. The null hypothesis of this test is that the model 

fits the data perfectly. The p-value (probability level in the output) of the 

hypothesis test shows that this hypothesis should not be rejected (p > .05), and thus 

we accept that the fit is perfect. 

The χ2 test is one possible test for the fit of the model to the data. However, it has 

a negative property: If N (the number of observations) is large, than the value of χ2 

will be large: indicating misfit. This is a negative property since you would like to be 

able to accept models if you have more data. However, it is a logical consequence of 

the way χ2 is computed: a little “misfit” with lots of observations makes that you are 

sure that there is some “misfit”. The model is not perfect. However, often we do not 

want to know whether the model is perfect, but rather whether its “good enough”. 

This motivates another measure for misfit that is widely used in SEM analysis 

called the RMSEA (Root Mean Square Error of Approximation). We will not dig into 

the details, but basically low values of RMSEA indicate a good fit. Often a model is 

considered good if the RMSEA < .05. There also exist an hypothesis test for the 

RMSEA (in AMOS this is denoted a PCLOSE). It test the following hypothesis: 

 

H0: RMSEA population = 0,05  [model fit COV ok] 

H1: RMSEA > 0,05 [model fit COV not ok] 

 

Thus, if PCLOSE < .05 (if we take the standard .05 value for alpha of a hypothesis 

test) then we reject the null hypothesis and conclude that the model fit is not ok. 
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Besides testing the overall model fit, we can also test the estimated effects of the 

model. Lets look at the estimated effects for our example data when we use AMOS. 

The estimate factor loadings are: 

 

 
 

 

The estimated correlation between the factors is: 

 
 

And the estimated variance components are: 

 
Note that for each a P is given indicating with a “*” whether the p-value of the test 

whether or not the estimate is equal to 0 is smaller than .05. This would indicate that 

all estimated effect (e.g.) for the factors to the items are distinct from 0. 

 

While all of these tests are useful to evaluate the model, the fact that a model fits 

well (e.g. the null hypothesis that the RMSEA < .05 is not rejected) does not mean 

our model is the true model: there might be other models that fit the data just as well, 

or even better. The true power of SEM is in model comparisons: we can compare 
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simple models to ever more complex models. Here we do a χ2 on the difference 

between two (nested) models where: 

 

χ2
difference =  χ2

simple – χ2
complex 

dfdifference = dfsimple – dfcomplex 

 

Models are nested when the simple model can be obtained by deleting parameters 

(arrows) from the complex model. In our example we could for example check 

whether or not deleting the correlation between the factors affects the model fit. The 

logic here is that a model without the correlation is simpler, and if it still fits the data 

well than we might prefer the simple model. We could also test whether for example 

it suffices to simplify the model by including what is called parallel items. This 

means that the factor loadings and the item variance are set to be equal to each other 

for each scale. Formally: 

 

a1 = a2 = a3  

 a4 = a5 =a6; 

var(U1) = var(U2)= var(U3) 

var(U4) = var(U5)= var(U6) 

 

This model would only have 5 parameters (one for a1 to a3, one for a4 to a6, one for 

VAR(U1) to VAR(U3), one for VAR(U4) to VAR(U6), and one for the correlation 

between the factors. From AMOS we can obtain the χ2 of this simpler model: 11.695. 

This we can use to compare the models: 

 

χ2
difference =  11.695 – 3.817 = 7.878 

dfdifference = 16 – 8 = 8 

 

In the above formula for the df of the simple model are given by 21 (true complexity) 

– 5 (model complexity) = 16. 

The decrease in model fit is not significant (you can look up the p-value for a χ2 

test with χ2 = 7.878 and df=8. This indicates that the simple model is not any worse 

than the complex model and thus would be preferred. By incrementally comparing 
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different SEM models we can get a better and better understanding of the true model 

that generated our data. 

From the above discussion of SEM you will need to understand the general 

concepts. We will not cover how to do SEM analysis yourself. You should be able to 

interpret χ2 tests and the RMSEA, and understand that we can build better and better 

models by comparing nested models. That’s it. 

 

The SEM warning! 

Three things that are often overlooked when using SEM, but are very important, 

make clear why SEM is both powerful and dangerous: 

 

1. If you look at a graphical model, then the effect of the arrows you do not 

draw is as big (if not bigger) than those you do draw. If you do not draw 

an arrow you are setting that covariance to 0. That is a very explicit 

assumption! 

2. Many graphical models that might look very different end up encoding the 

exact same covariance matrix. This is partly due to the fact that the 

direction of the arrows is not specifically encoded in the covariance 

matrix. So, models that might look very different graphically might be the 

same mathematically. 

3. If your model has a good fit (RMSEA < .05), than this does not mean that 

your model is correct. It only means that the data is not unlikely given the 

model. However, the data might also not be unlikely given a different 

model. So it strengthens your confidence that your model is useful but you 

can never confirm that your model is the only true model. 

 

Again, if you want to do a SEM analysis and are unsure about what you are doing, 

consult an expert. 
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Cluster analysis (CA) 

Slowly but surely we have arrived at our last topic of the course: Cluster analysis. 

Cluster analysis is, like factor analysis, a data summarization technique. So, at a really 

high level its comparable to factor analysis. However, the approach to summarizing 

data in cluster analysis is distinct from factor analysis. While with factor analysis we 

tried to group items into (sub)scales, cluster analysis does is usually not used to 

cluster items, but rather to cluster people. The aim of cluster analysis is to find groups 

of people who have similar scores on a number of questionnaire items. So, in some 

way you can think of factor analysis as grouping the columns (questions) in an SPSS 

dataset, while cluster analysis aims to group the rows (persons). Note that another 

difference between the two methods is that while factor analysis gives us continuous 

factor scores for each person, cluster analysis will create discrete scores: each person 

will be assigned to one specific cluster. 

Cluster analysis is an umbrella term form numerous different algorithms which all 

aim to group together similar units (in the social sciences units are often people). It is 

used widely in all branches of science. We will cover two examples of methods of 

two distinct classes of clustering:  

 

• Hierarchical clustering: With hierarchical clustering we start by putting 

together the two most similar people into a cluster. Next, we put together 

the second two closest units, etc. etc. All the way until we end up with one 

giant cluster. We will cover a version of hierarchical clustering called 

Ward’s method.  

• Non-hierarchical clustering: With non-hierarchical clustering we choose a 

number of cluster k in advance, and then split up the dataset into k groups 

where the aim is to put individual together in a cluster who are as similar 

as possible. 

 

Cluster analysis is not valued highly in the social sciences since it is relatively a-

theoretical. And, many different clustering methods exists, each often leading to 

different outcomes. However, despite these difficulties clustering can be useful both 

for summarizing as well as interpretation.  
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Cluster analysis by example: Ward’s method 

We will start with a hierarchical clustering method called Ward’s method. We will 

run through a very small example dataset to make all the concepts clear. 

We will start with a very small dataset containing the observations of 9 people on 

two items, X1 and X2. The data looks like this: 

 

Person X1 X2 

1 18 50 

2 20 46 

3 23 54 

4 25 42 

5 41 70 

6 43 72 

7 59 34 

8 61 38 

9 71 34 

 

It is hard to see directly from the data how we would group people together. 

However, if we plot the data the structure is immediately clear: 

 
X1

8070605040302010

X2
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The data clearly contains three clusters. On the top of the plot are person 5 

(X1=41, X2=70) and 6 (X1=43, X2=72). These cluster together. These two people are 

close together, and distinct from the others. Similarly for person 1 to 4, and person 7 

to 9. 

While we can see the clustering clearly in this simple dataset, it is often very hard 

to see clusters in real datasets. If you are clustering based on more than 2 variables it 

is hard to plot the data, and if you have 100’s of people, the clustering might not be 

clear immediately. Finally, to have a computer cluster the data we need more than just 

our eyes: we need to formalize what we mean by close together. For this we need a 

measure of equality between the persons. 

Cluster algorithms can differ on their measure of equality. Here we will discuss 

Ward’s method, and later on we will discuss k-means clustering. These both use the 

same distance measure. And, both of these methods  can be performed in SPSS. 

Measuring distance 

Ward’s method works by starting with N clusters (as many as we have people) 

and subsequently merge 2 clusters that are close together to form a single cluster (step 

1). Next, the second closest clusters are merged (step 2), all the way to step N-1, at 

which only a single cluster is left. 

Which clusters are closest to each other (and thus should be merged) at each step 

is relatively simple to define mathematically (although it looks challenging). The 

clusters for which the increase in so-called SSw (the Sum of Squares Wards method) is 

minimized will be merged. Here is the specification of SSw: 

 

2

( ijkX −
_

jkX )
i=1

Kn
∑

j=1

J

∑
k=1

K

∑
 

 

Let’s dissect this formula. In parentheses it states the difference between Xijk and 𝑋jk. 

Xijk is the score of person i in cluster k on item j. At the first step, every person will be 

in his or her “own” cluster (there are as many clusters as people), so this will initially 

just be the score of person i on item j. 𝑋jk is the mean of variable j in cluster k. So (Xijk 

- 𝑋jk) is the distance of a person to the cluster mean on a specific item. This distance 

is squared, since we care about the absolute distance (and since squaring gives 
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equations that are easier than taking the absolute value). So, we now have the squared 

distance of individual i on item j in cluster k from the mean score on j in cluster k. 

(Try to bear with me…). 

Finally, to compute the SSw, this distance is summed over all the individuals in 

cluster k, then summed over all items, and than summed over all clusters. 

This might have been tricky, so let’s examine the steps for our small data 

example: 

 

At step 0: There are 9 clusters. Everyone is their own cluster, and thus the 

difference of the score of the person from the mean score on that cluster is 0. Summed 

over all items and all clusters this gives SSW = 0 

At step 1: We want to make 8 clusters, so we should add the two persons together 

that are the closest to each other. It looks like these are persons 5 and 6 (i=5 and i=6). 

If we indeed put these two together, then the mean score of this cluster (5 and 6 

together) will be 41+43/2 =42 for X1, and 70+72/2=71 for X2. Thus 𝑋1k = 42, and 𝑋2k 

= 71. The total SSw when putting these two together is: 

 

SSW = [(41-42)2 +(43-42)2] + [(70-71)2 +(72-71)2] + 0 + … + 0 = 4 

 

where the first term is the difference of i=5 on X1 (=41) with the cluster mean of X1 

(=42). The second term is the difference between i=6 on X1 (=43) and the mean on X1 

(=42). Next, this is repeated for X2: 70-71 for i=5, and 72-71 for i=6. Since these are 

the only two people that are clustered together, all the other people will still be in their 

“own” cluster (as in step 0), and thus there will be no difference between the mean of 

that cluster and their own score. All others thus contribute 0 to the total SSw.  

A computer would normally not be able to “see” that i=5 and i=6 should be 

clustered together. What actually happens is that the computer tries all possible 

options (1&2 together, 1&3 together, etc. etc.) and computes the SSw each time. It 

than looks for which clustering the SSw is the smallest and makes that cluster. You 

should convince yourself that any other cluster adding two people together will lead 

to an SSw that is larger then 4. 
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Step 2: We now want to make 7 clusters. The two closest are i = 7 & i = 8.  Now 

𝑋1k = 60 and 𝑋2k = 36. The total SSw when adding these two units together is: 

 

SSW = [(59-60)2 +(61-60)2] + [(34-36)2 +(38-36)2] + 4 + 0+… + 0 = 10+4 = 14 

 

here the first terms are the difference for i=7 to the cluster mean on X1, then i=8 on 

X1, etc. etc. Just like above. The 4 comes from the previous clustering we made at 

Step 1. The total SSw now is 14, and you should again convince yourself that making 

another cluster than 7 and 8 would lead to a higher SSw. 

 

Step 3: At step 3 we merge 1 & 2. The total SSW = 14 + 10 = 24 

 

We now skip some steps and get to the last step (step N-1): 

 

Step 8: Here we merge two clusters which include multiple people. The first 

includes (1,2,3,4,5,6) and the second includes (7,8,9): SSW = 1487,333 + 3371,111 = 

4858,444. 

 

I hope this example gave you some intuition for how the clustering is done. 

However, in practice you would obviously not compute the SSw by hand, you use a 

computer. 

 

Ward’s method in SPSS 

Lets use SPSS to compute Ward’s clustering for our example dataset. One of the 

most important tables that you will get in the output is the agglomeration schedule: 
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This table shows, at each step in the clustering process, which clusters are merged. In 

the column “coefficients” you can find the SSw at each step.  

The “Clusters Combined” columns give you insight into which clusters are joined 

together. In the first step i=5 and i=6 are clustered. This gives an SSw of 4. In the next 

step 7 & 8 are clustered. This gives a total SSw of 14. Next 1&2 are clustered.  

At step 4 clusters 1 & 3 are clustered. Note that cluster 1 now already contains 2 

persons since these were joined at step 3. SPSS will refer to a cluster with multiple 

people using the lowest person number. You can also see this in the “Stage Cluster 

First appears” columns: in the first 3 steps these contain only 0’s: we are only adding 

people together. At step 4 you see that cluster 1 appeared earlier, namely at step 3: 

this is when i=1 and i=2 were clustered. The final column indicates when a cluster 

that has been formed is used again. Here you can (e.g.) see that the first cluster (i=5 & 

i=6) is only added to the other cluster at a very late stage: stage 7. 

The agglomeration schedule thus gives a full overview of the clustering steps. 

Ward’s method is called hierarchical clustering because this stepwise method.  

Note that the SSw in the agglomeration schedule increase at each step. This is 

required, because clustering will lead to an increase in the distance. However, also 

note that the increase between SSw’s at subsequent steps increases (or is equal): from 

step 0 to 1 the SSw increase by 4. Then, it increases by 10. Next it increases by 10 

again. Then, it increases by 34.6. etc. etc. This increase will always keep increasing: if 

it did not than two other clusters should have been merged earlier. 

 

A second useful table of the Ward cluster analysis output is the cluster 

membership table: 

 

Agglomeration Schedule

5 6 4.000 0 0 7
7 8 14.000 0 0 6
1 2 24.000 0 0 4
1 3 58.667 3 0 5
1 4 123.000 4 0 7
7 9 221.667 2 0 8
1 5 1487.333 5 1 8
1 7 4858.444 7 6 0

Stage
1
2
3
4
5
6
7
8

Cluster 1 Cluster 2
Cluster Combined

Coefficients Cluster 1 Cluster 2

Stage Cluster First
Appears

Next Stage
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This table shows at each step which cases (people) belong to which cluster. Here 

you can see that when there are 8 clusters, cases 5&6 belong to the same cluster. If 

there are 7 clusters, then 7&8 also belong to the same cluster. Etc. etc. 

However, this raises the very obvious question: how many clusters should I 

choose? 

Selecting the number of clusters 

There are basically two ways of determining the number of clusters. Both are 

based on the SSw. First, and this is the one I find most useful, you can look at a plot of 

the difference in SSw as the number of clusters increases. For our example the 

differences are: 

 

SSW1 – SSW2 = 3371,111  

SSW2 – SSW3 = 1265,666  

SSW3 – SSW4 = 98,667  

SSW4 – SSW5 = 64,333 

SSW5 – SSW6 = 34,667 

SSW6– SSW7 = 10 

SSW7– SSW8 = 10 

SSW8– SSW9 = 4 

 

If you read these from the bottom up then you see that the steps are small at first: 

4 to 10 to 10 to 34, etc. However, when we move from 3 clusters to 2 clusters (SSw2 – 

SSw3) there is suddenly a very large increase. This indicates that at this step we are 

adding together two clusters that are very different. This makes sense given our 

Cluster Membership

1 1 1 1 1 1 1
2 2 1 1 1 1 1
3 3 2 1 1 1 1
4 4 3 2 1 1 1
5 5 4 3 2 2 1
5 5 4 3 2 2 1
6 6 5 4 3 3 2
7 6 5 4 3 3 2
8 7 6 5 4 3 2

Case
1
2
3
4
5
6
7
8
9

8 Clusters 7 Clusters 6 Clusters 5 Clusters 4 Clusters 3 Clusters 2 Clusters
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example data: the moment we move from 3 clusters (which are clearly visible) to 2 

clusters we are adding together two distinct clusters. This is something you do not 

want to do: we want to have clusters that are similar to each other, thus we do not 

want to add two very distinct cluster together. This means we want to stop our 

clustering right before a large increase in the difference in SSw. 

A plot of these differences looks like this: 

 

 
 

You can see that the line is very flat for k=3 to k=8. At k=2 there is suddenly a large 

increase. Since we do not want to have this increase we should stop clustering right 

before the increase: we should stop when we have 3 clusters. 

 

This same logic also applies to a second method of deciding on the clustering: the 

dendrogram. This graphical representation of the hierarchical clustering procedure 

shows on the x-axis the SSw and on the y axis there are entries for each of the clusters. 

It is presented below. Here what we look for is the first time that the horizontal lines 

in the dendrogram are long. Initially, when persons that are close together are 

clustered the increased SSw is small and thus the horizontal lines are short. Then, 

when we combine dissimilar clusters, the lines become long. If you look from left to 

right for the first occurance of long horizontal lines, and the count the number of 

lines, this gives you the number of clusters you should select. In our example the 

outcome is again clearly 3 clusters. 
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In the above dendrogram the three clusters are indicated using red squares. Note 

that dendogram's, while very simple in our example, are often very hard to interpret. 

If you have many persons, and if the clustering is not so clear-cut as in our example, it 

is often really hard to tell what number of clusters you should use. 

Interpreting the clusters 

Interpreting a cluster solution can be done by computing summary statistics of the 

clusters. Once we have decided we are going to use 3 clusters on our example data, 

we can add the cluster membership to our dataset: 

 

Person X1 X2 Cluster 

1 18 50 1 

2 20 46 1 

3 23 54 1 

4 25 42 1 

5 41 70 2 

6 43 72 2 

7 59 34 3 

8 61 38 3 

9 71 34 3 
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Subsequently we can analyze our dataset using the cluster memberships as a new 

variable. We can for example run a standard ANOVA using the cluster memberships 

as a factor: 

 

 

 
 

The output shows the differences in the means of the clusters, and it shows these 

differences are statistically significant. Don’t get too excited about this: you would 

expect clear differences between the clusters because that is exactly why you made 

the clusters the way they are. However, you can use the means of the clusters to 

describe the people in that cluster (For example, cluster 1 contains people who score 

low on X1 and average on X2). Obviously, once you have the clusters, you can also 

examine the differences between the clusters on variables that you have not used for 

the clustering. 

An example on a larger dataset 

Lets run through Ward clustering on a larger dataset. Here we run Cluster analysis 

on five scales ‘risk aversion’ (riskav), ‘sensitivity to others’ (sens), ‘tiredness’ (moe), 

‘extent to which you have secrets’ (geheim), ‘satisfaction’ (tevreden). 

The first step in the actual analysis would be to standardize the scores on these 

scales. This is very important since if you do not standardize the scores then those 

items that have a larger range (e.g. run from 1 to 100) will contribute more to the 

Report

Mean

21.5000 48.0000
42.0000 71.0000
64.0000 35.3333
40.2222 48.8889

Ward Method
1
2
3
Total

X1 X2

ANOVA Table

3104.556 2 1552.278 72.199 .000
129.000 6 21.500

3233.556 8
1532.222 2 766.111 49.604 .000

92.667 6 15.444
1624.889 8

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

X1

X2

Sum of
Squares df Mean Square F Sig.
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distance measure (SSw) than those that have a small range (1 to 10). If you do not 

standardize then the variable with the large range will have a much large impact on 

the cluster solution. Here are some overviews of the data (before standardization): 

 

 
 

When we run Ward clustering, we can look at the agglomeration schedule (but it 

will be very big since we have 591 units to cluster!), but its easier to look straight at 

the scree plot: 

 

 
 

Since the first real increase is from 3 to 4 clusters, we should choose 4 clusters. 

We can then ask SPSS to add the cluster memberships to our datafile and look at the 

descriptives: 

Descriptive Statistics

591 20.00 11.4873 15.057
591 16.00 18.5431 7.360
591 19.00 10.1303 8.202
588 50.00 60.8010 77.151
590 5.00 2.6593 1.213
587
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This makes clear that (e.g.) cluster 1 contains people who score very high on 

sensitivity to others (compared to the other clusters), while cluster 4 contains people 

that are very risk averse.  

We can also look at differences between clusters on variables we did not consider 

for the clustering. For example, we can look at differences between clusters on 

sickness (‘ziek’), depression (‘depres’), self-awareness (‘self-aw’), attention to 

feelings (‘gevoel’), and importance social contacts in a sport (‘sport2’): 

 

 

Report

-.2652772 .3768041 -.1482899 .5631699 -.2422328
214 214 214 214 214

.8146644 -.9016471 .8920021 .0951029 .2047608
165 165 165 165 165

-.2567399 .2605419 -.7313836 -.9653922 -.8580208
112 112 112 112 112

-.4853035 .3795671 -.3692130 -.3070338 1.1888606
96 96 96 96 96

.0039290 -.0042871 -.0032591 -.0023660 -.0000341
587 587 587 587 587

Mean
N
Mean
N
Mean
N
Mean
N
Mean
N

Ward Method
1

2

3

4

Total

Zscore(G
EHEIM)

Zscore(T
EVRED) Zscore(MOE)

Zscore(S
ENS)

Zscore(RI
SKAV)

Report

Mean

10.2403 5.0516 45.9484 27.4416 11.1415
13.7931 6.9569 45.5259 24.5948 11.4722
10.1934 5.2028 46.5755 28.2275 11.3851
11.4231 5.6538 46.1923 26.2621 11.5571
11.1365 5.5894 46.1346 26.9521 11.3667

Cluster Number of Case
1
2
3
4
Total

DEPRES ZIEK GEVOEL SELFAW SPORT2
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It is clear form this analysis that the clusters differ significantly on their 

depression, sickness, and self-awareness scores. 

 

As a final note before we more over to k-means clustering: Ward’s method often 

works best when the number of units to cluster is relatively small (say N < 50). For 

large datasets, different methods are often faster and more easy to interpret. K-means 

clustering, which we will discuss next, is a method that works very well on large 

datasets (however, it is non-hierarchical!) 

K-means clustering 

K-means clustering is a non-hierarchical form of clustering. Here, you as the 

analyst decide on the number of clusters before you run the analysis (obviously you 

can try multiple numbers of clusters, but still, you have to specify them). It is non-

hierarchical since it does not aim to add together the closest individuals (or clusters) 

at each step like Ward’s method, but rather it tries to “place” the cluster centers for 

the number of clusters that you selected in such a way that the distances within the 

clusters are as small as possible (and the between cluster distances are large). K-

means uses the same distance measure as Ward’s method (the Sum of Squared 

differences from the cluster means) to decide on the location of the cluster means. 

ANOVA Table

1139.478 3 379.826 60.504 .000
3653.600 582 6.278
4793.078 585
293.866 3 97.955 31.723 .000

1800.188 583 3.088
2094.055 586

89.912 3 29.971 .740 .528
23604.456 583 40.488

23694.368 586

1073.724 3 357.908 18.327 .000
11326.934 580 19.529
12400.658 583

8.770 3 2.923 .341 .795
3468.217 405 8.563
3476.988 408

DEPRES * Cluster
Number of Case

ZIEK * Cluster
Number of Case

GEVOEL * Cluster
Number of Case

SELFAW * Cluster
Number of Case

SPORT2 * Cluster
Number of Case

Sum of
Squares df Mean Square F Sig.
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K-means is an iterative method in the sense that it will try to place the k cluster 

centers you specified in the plot, and then compute the SS. Then, the algorithm tries 

to move the cluster centers and see if the total distance decreases. The algorithm will 

do this until the distance fails to decrease and then it will stop. Once the algorithm 

stops it knows where the cluster centers are, and which people “belong” to that 

cluster. 

K-means in SPSS 

Suppose we take our simple example of 9 people again, and now run k-means 

clustering in SPSS. We already know from the Ward’s analysis that we want 3 

clusters so we choose k=3.  

The first table in the output tells you where SPSS initially placed the cluster 

centers: 

 

 
 

Next, in a very long table, you can see the iterations of the algorithm: 

 

Initial Cluster Centers

18.00 72.00 43.00
50.00 34.00 72.00

X1
X2

1 2 3
Cluster
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At each step in the algorithm the cluster centers move. At step 22 the center of 

cluster 1 stops moving, and after 32 steps all clusters have stopped moving. Now 

SPSS can give you the final cluster centers: 

 

 

Iteration Historya

3.225 6.083 .943
.645 1.521 .314
.129 .380 .105
.026 .095 .035
.005 .024 .012
.001 .006 .004
.000 .001 .001

4.128E-05 .000 .000
8.256E-06 9.282E-05 .000
1.651E-06 2.320E-05 4.790E-05
3.302E-07 5.801E-06 1.597E-05
6.605E-08 1.450E-06 5.322E-06
1.321E-08 3.626E-07 1.774E-06
2.642E-09 9.064E-08 5.914E-07
5.284E-10 2.266E-08 1.971E-07
1.057E-10 5.665E-09 6.571E-08
2.114E-11 1.416E-09 2.190E-08
4.226E-12 3.541E-10 7.301E-09
8.434E-13 8.852E-11 2.434E-09
1.719E-13 2.213E-11 8.112E-10
3.178E-14 5.532E-12 2.704E-10
1.005E-14 1.383E-12 9.013E-11

.000 3.458E-13 3.005E-11

.000 8.644E-14 1.002E-11

.000 2.930E-14 3.336E-12

.000 .000 1.110E-12

.000 .000 3.769E-13

.000 .000 1.206E-13

.000 .000 4.019E-14

.000 .000 2.010E-14

.000 .000 7.105E-15

.000 .000 .000

Iteration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1 2 3
Change in Cluster Centers

Convergence achieved due to no or small
change in cluster centers. The maximum
absolute coordinate change for any center is
.000. The current iteration is 32. The minimum
distance between initial centers is 33.302.

a. 

Final Cluster Centers

21.50 64.00 42.00
48.00 35.33 71.00

X1
X2

1 2 3
Cluster
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Note that, as compared to Ward’s method the cluster numbering changed: the 

numbers are used only on a nominal scale and the size of the numbers thus has no 

meaning. Also note that the cluster centers for Ward’s method and for k-means in this 

example are the exact same. However, this need not be the case. Because this example 

is simple and both methods use the same distance measure we obtain the same 

solution. However, due to the hierarchical structure of Ward, and the non-hierarchical 

approach of k-means, the solutions will not always be the same. K-means is better 

able to minimize the distance since it does not have the “legacy” of previously 

grouped clusters. 

Besides the above tables running k-means in SPSS will immediately give you the 

ANOVA comparisons between the clusters. Just like in the case of Ward’s method 

you can add the cluster memberships to the datafile, and use them in subsequent 

analysis. Once you move your analysis from people to an analysis of clusters, you 

have greatly summarized your data. 
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Final remarks 

These lecture notes contain all the material you will need to know for this course. 

However, they are concise: to really become proficient at creating and evaluating 

questionnaires you need practice. During the tutorials and the practical you will 

practice yourself with all the techniques that are discussed in these notes. Make sure 

you understand the methods, and know how to apply them.  

A lot of the statistical methods we discussed rely heavily on the analysis of 

correlations (or covariances). Make sure that you thoroughly understand these topics.  

Good luck on the final exam! 

 

 

Maurits Kaptein 

m.c.kaptein@uvt.nl 

 

Before emailing: please check blackboard first to see whether your question is 

answered there. Also, for questions about the materials of this course during the 

course please consult me at the break or directly after a lecture. 
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Formula sheet: 

1) Gemiddelde mean(x)     x =
xi

i=1

n

∑
n  

 

2) Variantie var(x)     var(x) =
(xi − x )

2

i=1

n

∑
n−1

 

 
3)  Standaard deviatie sx     sx = var(x)  

 
4) Covariantie cov(x,y)    

 cov(x, y) = (xi − x )(yi − y )
n−1i=1

n

∑  

 

5) Correlatie rxy      
ss
yx

r
yx

xy
),cov(

=  

 
6) Lineaire combinatie V = a1X1 + a2X2 +… + aJXJ  + b   

Gemiddelde lineaire combinatie   
−

=

−

∑+= xabv j

J

j
j

1

 

Variantie lineaire combinatie    ),cov()var(
1 1

xxaaV kjk
J

j

J

k
j∑ ∑=

= =
 

 
 
7) Lineaire combinaties V = a1X1 + a2X2 +… + aJXJ  + b en W = c1Y1 + c2Y2 + … + cKYK.  

 Covariantie lineaire combinaties   ),cov(),cov(
1 1

yxcaWV kjk
J

j

K

k
j∑ ∑=

= =
 

 
8) Model klassieke testtheorie    Xi = Ti + Ei 

 
9) Opsplitsing variantie testscore   var(X) = var(T) + var(E) 

 
10) Betrouwbaarheid     

)var(
)var(

' X
T

rxx =
 

11) Spearman-Brown     

rk
rkr

xx

xx
kk

'

'
' )1(1 −+
=

 

12) Spearman-Brown, herschreven   

)1(
)1(
''

''

rr
rrk
kkxx

xxkk

−
−

=
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13) Variantie van een testscore    

∑∑=
= =

K

j

K

k
kj xxX

1 1
),cov()var(  

 

14) Cronbachs α      
)

)var(

)var(
1(

1
1

X

X

K
K

K

k
k∑

−
−

= =α
 

 
15) Standaardmeetfout     rSS xxXE '1−=  

 
16) Correctie voor attenuatie    

rr
rr

YYXX

XY
Y TX T

''

=
 

 
17) Model factoranalyse     UbFaX ii

K

k
kiki +=∑

=1

 

 

18) Communaliteit      ∑
=

=
K

k
iki ah

1

22  

 
19) Gereproduceerde correlatie rX1X2 als factoren orthogonaal zijn:   

 aar k

K

k
kXX 2

1
121 ∑

=

=  

 

20) Door factor k verklaarde variantie (eigenwaarde) ∑
=

=
J

j
jkk a

1

2
λ  

 
21) Gereproduceerde correlatie rX1X2 als factoren gecorreleerd zijn, in het geval van twee 

factoren F1 en F2: )( 12212211212221121121 aaaaraaaar FFFFFFFFFFXX +++=  
 
22) Correlatie tussen factor en item als factoren gecorreleerd zijn, in het geval van twee 

factoren F1 en F2:  raar FFFFFX 21211111 +=  
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23) Aantal elementen in covariantiematrix (COV):   J(J+1)/2 
 
24) Aantal parameters in confirmatieve factoranalyse: 2J ≤ parameters ≤ 2J + K(K-1)/2 
 
25) Df = aantal elementen COV – aantal parameters 
 
26) C.R. = effect/(standard error effect) 
 

27) (geneste) Modeltest in confirmatieve FA  chi-kwadraat model B –  
van Model A tegen Model B     chi-kwadraat model A 

 df = dfB - dfA 
 

28) (afstand)2 van i in k op j t.o.v. gemiddelde  )(
_ 2

XX jkijk−
 

op j in cluster k 
 

29) som over alle individuen in k van (afstand)2   ∑ −=

n

jkijk

K

i XX1

2

)(
_  

t.o.v. gemiddelde op j in cluster k = 
= bijdrage variabele j aan SSW van cluster k  
want (afstand)2 = (error)2 

 

30) som over alle variabelen van bijdragen   ∑∑ −= =

J

j i

n

jkijk

K

XX1 1

2

)(
_  

variabele aan SSW van cluster k 
= SSW van cluster k 

31) som over alle clusters van SSW    ∑∑∑ −= = =

K

k

J

j i

n

jkijk

K

XX1 1 1

2

)(
_  

 


