
StreamingBandit: A Platform for Developing
Adaptive Persuasive Systems.

Maurits Kaptein and Jules Kruijswijk

Tilburg University, Tilburg, the Netherlands
Assistant Professor, Statistics and Research Methods

m.c.kaptein@uvt.nl

Researchers in the persuasive technology field have demonstrated the effec-
tiveness and utility of persuasive applications in diverse domains such as health-
care, energy reduction, and interactive marketing (see, e.g., 4; 2). However, there
is an aspect of persuasive technologies that has long been advocated by scholars,
but has by-and-large not left the research realm; this is the basic notion that per-
suasive technologies should “deliver the right message, at the right time, to the
right user” (see, e.g., 3). Although there is a common understanding that persua-
sive technologies should be made both adaptive and personalized, creating such
systems is challenging. The successful development of adaptive persuasive sys-
tems requires a combination of design, social science, and technology. With this
poster we contribute to the latter: we introduce StreamingBandit, a platform
that supports the “logic and reasoning” of adaptive or personalized persuasive
systems. StreamingBandit is available open-source to those wishing to create
adaptive persuasive systems.

1 Introducing StreamingBandit

StreamingBandit is designed using the following formalization of a personalized
persuasive system:

– We assume index of the interactions t = 1, . . . , t = T . (T is likely undefined
at design time).

– The context xt ∈ Xt where X is a set of variables describing the current
state of the application or user.

– The action at ∈ At where A is a set of possible actions the application can
take.

– The reward rt is a (function of the) measured response at that point in time.
– A policy Π : x1, . . . , xt′ , a1, . . . , at′−1, r1, . . . , rt′−1 → at′ , is a mapping from

all possible interactions (their contexts, actions, and rewards) up to some
point in time t = t′ to the next action at′ .

In short, StreamingBandit, provides a platform that allows users to implement
different policies: different “rules” to assign new actions based on the historical
interactions and the current context.1

1 Note that the above formalization of the adaptive persuasive system in terms of
context, actions, and reward, is known as a contextual multi-armed bandit problem
(cMAB, or MAB for the simpler version without a context) (1).



StreamingBandit formalizes the challenge of designing adaptive persuasive
systems as a contextual Multi-Armed Bandit problem, and allows designers to
implement a policy Π on a webserver. The implementation of a policy is split
into two steps:

1. The summary step: In each summary step a set of parameters θt′−1 is up-
dated by the new information {xt′ , at′ , rt′}. Thus, θt′ = g(θt′−1, xt′ , at′ , rt′)
where g() is some update function. Effectively, all the prior data, x1, . . . , x

′
t,

a1, . . . , at′ , r1, . . . , rt′ are summarized into θt′ .
2. The decision step: In the decision step, the model r = f(a, xt′ ; θt′) is eval-

uated for the current context and the recommended action at time t′ is
selected.2

Figure 1 presents an overview of the platform. StreamingBandit is a python
3 application that runs a Tornado webserver (see http://www.tornadoweb.org/
en/stable/) and which discloses a REST API that facilitates the implementa-
tion of the summary and decision steps as described above. The two main REST
calls are:

– The decision call:

http :// HOST/EXPID/getaction.json?key=EXPKEY&context ={}

where EXPID and EXPKEY are the ID and key of the current application
and the variable context contains a JSON object encoding the context xt.
The call returns a JSON formatted object containing the selected action
given the policy.

– The summarize call:

http :// HOST/EXPID/setreward.json?key=EXPKEY&context ={}

&action ={}& reward ={}

where the context xt, action at and reward rt at a point in time are used to
update θt.

StreamingBandit allows users to create a new “experiment” to enable the above
two calls, and allows users to write custom python 3 scripts that implement the
summary and decision steps. For the Persuasive 2016 conference we have made
an instance of StreamingBandit available at http://131.174.75.205.

1.1 Using StreamingBandit

Configuring StreamingBandit consists of three steps; first, one creates a new ex-
periment which initializes up the associated REST calls. Second, one implements
the summary step logic in a custom python script which can be done using the
web-based front-end of StreamingBandit. Finally, one implements the decision
step.

2 Note that one could naively think that amax = argmaxaf(a, xt′ ; θt′) would be the
best action to choose. However, this ignores the uncertainty in both f() and θ.



Mobile'phone' Server'running'
StreamingBandit

/2/getAction.json? 
key=EXPKEY& 
context={“userid”=12,”weather”=“sunny”} 

action={“type”=“run”,”distance”=5.8} 

Decision'call:'

/2/setReward.json? 
key=EXPKEY& 
context={“userid”=12,”weather”=“sunny”}
&action={“type”=“run”,”distance”=5.8}& 
reward=6.2 

Ok 

Summary'call:'

Sensor'

Distance=6.2 

Fig. 1. Schematic overview of the core functionality of StreamingBandit.

Here we provide the implementation of an AB-test using StreamingBandit.
In this simple example there is no context (thus, this is a MAB problem, not
cMAB), there are only two possible actions at ∈ {A,B}, and the reward is a
click on a webpage (rt ∈ {0, 1}). The summarize step can be implemented as
follows:

1 import libs.base as base

2 prop = base.Proportion(self.get_theta(key="version",

3 value=self.action["version"]))

4 prop.update(self.reward["click"])

5 self.set_theta(prop , key="version", value=self.action["version"])

This code updates and stores the click proportion of the different versions (the
actions) of the application. The decision step is given by:

1 import libs.base as base

2 propl = base.List(self.get_theta(key="version"),

3 base.Proportion , ["A", "B"])

4 if propl.count () > 1000:

5 self.action["version"] = propl.max()

6 else

7 self.action["version"] = propl.random ()

Which implements that up to 1000 interactions (t = 1000) randomly version A
and B are suggested. After 1000 interactions, the version with the highest click
through proportion is suggested.

Note that this very simple implementation of an AB-test merely touches the
surface of the functionalities of StreamingBandit: The platform has already
been used to implement personalized pricing of consumer loans for a consumer
bank, persuasion profiling on a large e-commerce store, etc. StreamingBandit
comes with a number of different libraries (such as libs.base mentioned above)
to enable streaming processing of data. StreamingBandit also allows logging
of all the calls that are made and all the data that is collected. We have



tried to make StreamingBandit both scalable and secure: the management con-
sole can easily be protected using signed cookies, and the REST calls to the
core summary and decision steps are protected using the experiment ID and
key combination. Scalability is ensured by a) using state-of-the art technolo-
gies in the development of StreamingBandit such as Tornado (as a base for
the webserver), and Redis (an extremely fast, in-memory data-base system),
and b) by forcing, by design, the use of online (streaming) analysis. Finally,
StreamingBandit allows “nested” experiments: hence, the summary or decision
steps of an experiment can call, using self.run experiment(id), the summary
or decision code of another experiment. This extremely powerful feature allows
one to implement complex logic to compare multiple methods of adaptation or
personalization. The full documentation of StreamingBandit can be found at:
http://mkaptein.github.io/streamingbandit/index.html

2 Conclusions

StreamingBandit is still work in progress: Although we have recently released
the first stable version of the application on GitHub, we are still developing
additional toolkits, examples, and documentation. Also, we are currently using
StreamingBandit in the evaluation of adaptive persuasive technologies; we hope
to be able to report on actual field trials powered by StreamingBandit in the
near future. However, we think the current version is mature enough to share
with the Persuasive Technology community, and to encourage others to use the
application. We are actively seeking feedback to improve the application and
maximize its use.

References

[1] Berry, D.A., Fristedt, B.: Bandit Problems: Sequential Allocation of Exper-
iments. Springer (1985)

[2] Fogg, B.J.: Persuasive Technology: Using Computers to Change What We
Think and Do. Morgan Kaufmann (2002)

[3] Kaptein, M.C., de Ruyter, B., Markopoulos, P., Aarts, E.: Tailored Persua-
sive Text Messages to Reduce Snacking. Transactions on Interactive Intelli-
gent Systems 2(2), 10—-35 (2012)

[4] Tuomas, L., Oinas-Kukkonen, H.: The persuasiveness of Web-based alco-
hol interventions. In: 9th IFIP Conference on e-Business, e-Services, and
e-Society. pp. 164–176 (2009)


