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Abstract. The author should be commended for his outstanding contribution to
the literature on Bayesian regression tree models. The author introduces three
innovative sampling approaches which allow for efficient traversal of the model
space. In this response, we add a fourth alternative.

Keywords: Markov chain Monte Carlo, Birth-death process, continuous time
Markov process, Bayesian regression tree.

1 Background

The algorithm introduced in section 2.4 consists of a combination of birth/death and
tree rotation proposals. Essentially, the birth/death mechanism explores trees with a
different dimension, while the rotation mechanism explores alternative trees with the
same dimensions. The specific birth/death mechanism proposed is known as reversible
jump MCMC (RJ-MCMC) (Green, 1995) and is based on an ergodic discrete-time
Markov chain. This algorithm is efficient only if the acceptance rate is high. As the
author points out, this is not always the case.

This issue can be overcome by adopting birth-death MCMC (BD-MCMC) which
is based on a continuous-time Markov process, as an alternative to RJ-MCMC. In
this sampling scheme the algorithm explores the model space by jumping to a larger
dimension (birth) or lower dimension (death) where each of these events is modeled as
independent Poisson processes. The birth and death events thus occur in continuous
time and their rates determine the stationary distribution of the process; see Figure 1.
In BD-MCMC the moves between models are always accepted making the algorithm
extremely efficient. Cappé et al. (2003) have shown, on appropriate rescaling of time,
that the RJ-MCMC converges to a continuous time birth-death chain. One advantage
of BD-MCMC is its ability to transit to low probability regions that can form a kind of
“springboard” for the algorithm to flexibly move from one mode to another. The BD-
MCMC algorithm has already been used effectively in the context of graphical models
(Mohammadi and Wit, 2015; Mohammadi et al., 2017; Mohammadi and Wit, 2016) and
mixture distributions (Stephens, 2000; Mohammadi et al., 2013).

2 Extension to BD-MCMC sampler

To implement the BD-MCMC mechanism we need to proof that the stationary distri-
bution of the birth-death process converges to our target posterior distribution

Pr(T |data) ∝ π(T )L(T ).
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Figure 1: Visualization of the BD-MCMC algorithm. The left panel shows the true
posterior distribution and the middle panel compares to progression of BD-MCMC and
RJ-MCMC. {W1,W2, ...} denote waiting times and {t1, t2, ...} denote jumping times for
the BD-MCMC algorithm, while the dots visualize the discrete RJ-MCMC samples.
The right panel presents the estimated posterior probabilities of the trees which are the
proportional to the waiting times (see, Cappé et al., 2003, Section 2.5).

Mohammadi and Wit (2015) show that this will be the case if the balance condition
holds (Mohammadi and Wit, 2015, Appendix 1). It is easy to see that the proof of this
condition for graphical models provided by Mohammadi and Wit (2015) is also valid for
regression trees by noting that a tree is a special case of a graph. Let ΘT be the tree-
model space and ΘGmax graph space in which Gmax is a graph with the same number
of nodes as a tree T with the maximum number of nodes. Clearly, ΘT ⊂ ΘGmax

. This
argument supports the implementation of the same birth/death mechanism as proposed
by Mohammadi and Wit (2015) for trees: adding/removing a graph edge in the case of
a birth/death event corresponds to adding/deleting a node of the tree (see Figure 2).

Following Mohammadi and Wit (2015), the birth and death rates are

Bn(T ) =
π(T+n)L(T+n)

π(T )L(T )
,

Dn(T ) =
π(T−n)L(T−n)

π(T )L(T )
,

in which T+n/T−n is a tree T with one more/less node n. As birth and death follow a
Poisson processes, the time between two events has an exponential distribution and the
probability of birth and death events are proportional to their rates.

We thus propose to replace the accept-reject mechanism of RJ-MCMC by a con-
tinuous time birth-death mechanism. In this new birth/death scheme the births and
deaths occur at a higher rate when the components explain more of the data; a desir-
able feature not present in the RJ-MCMC approach. We believe that combining the
BD-MCMC with the rotation mechanism will increase the efficiency of the traversal of
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Figure 2: The birth-death mechanism for adding or deleting nodes of the tree.

model space (for a performance comparison of RJ-MCMC and BD-MCMC in graphical
models see Section 4.1 of Mohammadi and Wit, 2015).
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