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Abstract

Novel technological advances allow distributed and automatic measurement of human behavior.

While these technologies provide exciting new research opportunities, they also provide challenges:

datasets collected using new technologies grow increasingly large, and in many applications the col-

lected data are continuously augmented. These data streams make the standard computation of well-

known estimators inefficient as the computation has to be repeated each time a new data point enters. In

this tutorial paper, we detail online learning, an analysis method that facilitates the efficient analysis of

Big Data and continuous data streams. We illustrate how common analysis methods can be adapted for

use with Big Data using an online, or “row-by-row”, processing approach. We present several simple

(and exact) examples of the online estimation and we discuss Stochastic Gradient Descent as a general

(approximate) approach to estimate more complex models. We end this article with a discussion of the

methodological challenges that remain.

keywords Big Data, data streams, machine learning, online learning, Stochastic Gradient Descent
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Dealing with Big Data: an Online, Row-by-Row, Estimation Tutorial.

The ever-increasing availability of Internet access, smart phones, and social media has led to many

novel opportunities for collecting behavioral and attitudinal data. These technological developments al-

low researchers to study human behavior at large scales and over long periods of time (Swendsen et al.,

2011; Whalen et al., 2014). Because more data are made available for research, these technological devel-

opments have the potential to advance our understanding of human behavior (Barrett and Barrett, 2001)

and its dynamics. However, these novel data collection technologies also present us with new challenges:

If (longitudinal) data are collected from large groups of subjects, then we may obtain extremely large

datasets. These datasets might be so large that they cannot be analyzed using standard analysis methods

and existing software packages. This is exactly one of the definitions used for the buzz-term “Big Data”

(Sagiroglu and Sinanc, 2013; Demchenko et al., 2013): datasets that are so large that they cannot be

handled using standard computing machinery or analysis methods.

Handling extremely large datasets represents a technical challenge in its own right, moreover, the

challenge is amplified when large datasets are continuously augmented (i.e., new rows are added to the

dataset as new data enter over time). A combination of these challenges is encountered when — for

example — data are collected continuously using smart-phone applications (e.g., tracking fluctuations in

happiness, Killingsworth and Gilbert, 2010) or when data are mined from website logs (e.g., research into

improving e-commerce Carmona et al., 2012). If datasets are continuously augmented and estimates are

needed at each point in time, conventional analyses often have to be repeated every time a new data point

enters. This process is highly inefficient and frequently forces scholars to arbitrarily stop data-collection

and analyze a (smaller) static dataset. In order to resolve this inefficiency, existing methods need to be

adapted and/or new methods are required to analyze streaming data. To be able to capitalize on the vast

amounts of (streaming) data that have become available, we must develop efficient methods. Only if these

methods are widely available we will be able to truly improve our understanding of human behavior.

Failing to use appropriate methods when analyzing Big Data or data streams could result in computer

memory overflow or computations that take a lot of time. In favorable cases, the time to compute a

statistic using standard methods increases linearly with the amount of data entering. For example, if

computing the sum over n data points requires t time (where the time unit required for the computation is

dependent on the type of machine used, the algorithm used, etc.), then computing the sum over n+2 data

points requires t + 2c time, where c is t/n. Thus, the time increase is linear in n and is every increasing

as the data stream grows. In less fortunate and more common cases, the increase in time complexity is
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not linear but quadratic, or worse, amplifying the problems. Regardless of the exact scaling however, if

the data are continuously augmented both the required computation time and memory use eventually will

become infeasible

The aim of this tutorial paper is to introduce online learning (or row-by-row estimation), as a way

to deal with Big Data or data streams. Online learning methods analyze the data without storing all

individual data points, for instance by computing a sample mean, or a sum of squares without revising

older data. Therefore, online learning methods have a feasible time complexity (i.e., the time required

to conduct the analysis) and they require a feasible amount of computer memory when analyzing data

streams or Big Data. In the latter case, a very large static dataset is treated as if it were a data stream by

iterating through the rows.

Online estimation methods continuously update their estimates when new data arrive, and never revisit

older data points. Formally online learning can be denoted as follows:

θn = f (θn−1,xn),

or equivalently and a shorthand

θ := f (θ ,xn), (1)

which we will use throughout the paper. In Eq. 1, θ is a set of sufficient statistics (not necessarily the

actual parameters of interest), which is updated using a new data point, xn. The second equation for

updating θ does not include subscript n because we use the update operator ‘:=’, which indicates that the

updated θ is a function of the previous θ and the most recent data point, xn.

A large number of well-known conventional estimation methods used for the analysis of regular (read

”small”) datasets can be adapted such that they can handle data streams, without losing their straightfor-

wardness or interpretation. We provide a number of examples in this paper. Furthermore, we will also

introduce Stochastic Gradient Descent, a general method that can be used for the (approximate) estima-

tion of complex models in data streams. For all the examples introduced in this paper, we have made [R]

code available at http://github.com/L-Ippel/Methodology.

The paper is organized as follows: In Section 2, conceptual approaches for the estimation of parame-

ters in Big Data and/or data streams are discussed, and we focus primarily on online learning, the method

further illustrated in the remainder of this paper. In Section 3, we illustrate how often-used estimators

such as sample means, variances, and covariances, can be estimated using online learning. Here the ben-

efits of online learning methods to deal with data streams are illustrated by comparing the computational
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times of online and offline estimation methods. We then, in Section 4, provide an introduction of Stochas-

tic Gradient Descent (SGD) as a general (approximate) method to estimate more complex models in data

streams. Section 5 describes an example of an application of SGD in the social sciences. In Section 6 we

detail some of the limitations of the online learning approach. Finally, in the last section, we discuss the

directions for further research on data streams and Big Data.

2 Dealing with Big Data: the options

In the recent years, data streams and the resulting large datasets have received attention of many schol-

ars. Diverse methods have been developed to deal with these vast amounts of data. Conceptually, four

overarching approaches to handle Big Data can be identified:

1. sample from the data to reduce the size of the dataset,

2. use a sliding window approach,

3. parallelize the computation,

4. or resort to online learning.

The first option, to sample from the data, solves the problem of having to deal with a large volume of

data simply by reducing its size. Effectively, when the dataset is too large to process at once, one could

“randomly” split the data into two parts: a part which is used for the analyses and a part of the data that is

discarded. Even in the case of data streams, a researcher can decide to randomly include new data points

or let them “pass by” to reduce memory burden (Efraimidis and Spirakis, 2006). However, when a lot of

data are available, it might be a waste not to use all the data we could potentially use.

Option two, using a sliding window, also solves the issue of needing increasingly more computation

power by reducing the amount of data that is analyzed. In a sliding window approach the analysis is

restricted to the most recent part of the data (Datar et al., 2002; Gaber et al., 2005). Thus, the data

are again split into a part which is used for the analyses and a part which is not used for the analysis.

The analysis part (i.e., also coined “the window”) consists of the m most recent data points, while the

second part contains older data which are discarded. One could see a sliding window as a special case

of option 1, where the subsample only consist of new data points. When new data enter, the window

shifts to include new data (i.e. a (partially) new subsample) and ignore the old data. Although a sliding
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window approach is feasible in computation time and amount of memory needed, the sliding window

approach has the downside that it requires domain knowledge to determine a proper size of the window

(e.g., determine m). For instance, when studying a rare event, the window should be much larger, than in

the case of a frequent event. It is up to the researcher’s discretion to decide how large this window ought

to be. Also, when analyzing trends, a sliding window approach might not be appropriate since historical

data are ignored.

The third option, using parallel computing, is an often-used method to analyze static Big Data. Using

parallel computing, the researcher splits the data in chunks, such that multiple independent machines each

analyze a chunk of data, after which the results of the different chunks are combined (see, e.g., Atallah

et al., 1989; Chu et al., 2007; Turaga et al., 2010). This effectively solves the problem of memory burden

by allocating the data to multiple memory units, and reduces the computation time of static datasets,

since analyses which otherwise would have been done ‘sequentially’ are conducted ‘parallel’. However,

parallelization is not very effective when the dataset is continuously augmented: since all data are required

for the analyses, computation power has to eventually grow without bound for as long as the dataset is

augmented with new data. Also, the operation of combining the results obtained on different chunks of

data might itself be a challenge.

In this paper we will focus on a fourth method: online learning (e.g., Bottou, 1998; Shalev-Shwartz,

2011). As introduced in the previous section, online learning uses all available information, but without

storing or revisiting the individual data points. Online learning methods can be used in combination with

parallel computation, (for instance, see Chu et al., 2007; Gaber et al., 2005), but here we discuss it as a

unique method that has large potential for use in the social sciences. This method can be thought of as

using a very extreme split of the data; the data is split into a part consisting of n− 1 data points, where

n is the total number of observations, and only 1 data point on the other hand. Additionally, in online

learning methods, the n− 1 data points are summarized into a limited set of parameters or estimates of

interest, which take all relevant information of previous data points into account (Opper, 1998). The

summaries required to estimate the parameters of interest (often the sufficient statistics) are stored in θ .

Subsequently, θ is updated using some function of the previous θ and the new data point; historical data

points are not revisited.

Note that in this paper, we focus on the situation where parameters are updated using a single (most

recent) data point. There are also situations where one rather uses a ‘batch’ of data points. This is

known as batch learning. See for a discussion of batch learning in SGD, Wilson and Martinez (2003), or
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Thiesson et al. (2001) about choosing block (or batch) sizes for the EM algorithm.

The two characteristics of online learning – including all the data in the estimate and not revisiting the

historical data – jointly make online learning a very suitable approach to analyze data streams. However

two downfalls remain, like sliding windows, online learning also requires domain knowledge to judge

which information should be gathered beforehand; the researcher needs to choose the elements of θ

and their update functions up front. Second, although this issue is not unique for online learning, the

researcher often needs to choose starting values for the elements of θ . In the next section we further

detail online learning and how to choose starting values by providing the online adaptation of a number

of conventional statistics.

3 From Conventional Analysis to Online Analysis

In this section we discuss online analysis by providing several examples of the online computation of

standard (often computed offline) estimators. We discuss the online estimation of the following parame-

ters:

1. the sample mean,

2. the sample variance,

3. the sample covariance,

4. linear regression models, and

5. the effect size η2 (in an ANOVA framework).

The online formulations we discuss in this section are exact reformulations of their offline counterparts:

the results of the analysis are the exact same whether one uses an offline or online estimation method.

Note that for each of these examples, small working examples as well as ready-to-use functions are

available on http://github.com/L-Ippel/Methodology.
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3.1 Sample mean

The conventional estimation of a sample mean (x̄) is computationally not very intensive since it only

requires a single pass through the dataset,

x̄ =
1
n

n

∑
i=1

xi. (2)

However, even in this case, online computation can be beneficial. The online update of a sample mean is

computed as follows:

θ ={x̄,n},

n :=n+1,

x̄ :=x̄+
1
n
(xn− x̄).

(3)

where we again use the update operator ‘:=’ and start by stating the elements of θ that need to be updated:

in this case these are n (a count) and x̄ (the sample mean). Note that, appropriate starting value(s) for all

the elements θ need to be chosen. This also holds for all the other examples provided. In the case of

the mean one can straightforwardly choose n = 0 and x̄ = 0 as this starting point does not impact the

final result – this regretfully will not generally hold. Also note that an online sample mean could also be

computed by maintaining n := n+ 1 and Sx := Sx+ xn, where Sx is the sum over x, as the elements of

θ ; in this case the sample mean could be computed at runtime using x̄ = Sx
n . This latter method however

a) does not actually store the sought for statistic as an element of θ , and b) lets Sx grow without bound,

which might lead to numerical instabilities.

We implemented the online formulation of the sample mean in [R] code, mean online(), which can be

found at http://github.com/L-Ippel/Methodology/Streaming functions, and is a ready to use to update the

mean. Below we present [R] code, which gives a demonstration of the use of the online implementation

of the sample mean. In the [R] language, the ‘#’ denotes a comment.

> # create some data:

> # number of data points = 1000,

> # mean of the data is 5 and standard deviation is 2:

> N <- 1000

> x <- rnorm(n=N, mean=5, sd=2)

> # create an object for the results:

> res <- NULL
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> # the res object is needed such that you can feed back

> # the updates into the function

> # all sufficient statistics that are required for mean_online

> # are created within the function, at the first call

> for(i in 1:n)

+ {

+ res <- mean_online(input = x[i], theta=res)

+ }

>

3.2 Sample variance

In case of the sample variance (often denoted s2) more is to be gained when moving from offline to online

computation as the conventional method of computing a sample variance requires two passes through the

dataset:

s2 =
1

n−1

n

∑
i=1

(xi− x̄)2,

=
SS

n−1
,

(4)

where SS is the sum of squares. Here, the first pass is used to estimate the mean x̄, while the second pass

is used to compute the sum of squares.

A numerically feasible online method to compute a sample variance in a data stream is Welford’s

method (1962), which, to keep notation consistent, we denote as:

θ ={x̄,SS,n},

d =xn− x̄,

n :=n+1,

x̄ :=x̄+
1
n
(xn− x̄),

SS :=SS+d(xn− x̄).

(5)

Note the use of auxiliary variable d which is used since the online update of the sum of squares uses both

the deviation from the current sample mean as well as from the previous sample mean:

SSn = SSn−1 +(xn− x̄n−1)(xn− x̄n). (6)
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In order to obtain the actual sample variance, we compute s2 = SS/(n−1). The function to compute the

sum of squares is coined SS online and var online uses the online sum of squares function to compute the

variance. In order to obtain the standard deviation directly, sd online function can be used. Note that in

order to compute the variance and the standard deviation, starting values of n = 1 and a x̄ = x[1] (which is

the first data point), are required due to the fact that the sum of squares are divided by (n−1). The values

{n = 1, x̄ = x[1]} are provided as default, in case the user does not provide starting values.

3.3 Sample covariance

Next we turn to the estimation of quantities which depend on multiple variables, for instance the sample

covariance between x and y, which is often computed using:

sxy =
1

n−1

n

∑
i=1

(yi− ȳ)(xi− x̄),

=
SC

n−1
,

(7)

where SC is the sum of cross products. Again, making use of Welford’s method (1962), we can estimate

the sample covariance online:

θ ={x̄, ȳ,SC,n},

n :=n+1,

x̄ :=x̄+
1
n
(xn− x̄),

SC :=SC+(yn− ȳ)(xn− x̄),

ȳ :=ȳ+
1
n
(yn− ȳ).

(8)

Note that, contrary to the online computation of the sample variance, we do not need auxiliary variables in

this case since we can alternate updating of x̄ and ȳ. The choice of which of the two means is updated first,

is arbitrary (Pébay, 2008). Similar to the case of the sample variance, to compute the sample covariance,

we compute sxy = SC/(n−1).

In Appendix A we present [R] code to compute covariances and correlations online. Since computing

a correlation entails the estimation of sample means, variances, and a covariance all of these are also

included in this code snippet. For readers wanting to compute the sum of cross products, the covariance,

or the correlation during their analysis we have implemented the online estimation procedures in [R],

and these can be found in the Streaming functions file on github as respectively SSxy online, cov online,
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and cor online. Note that, unlike the previous statistics, these functions require 2 inputs, one for each

variable.

3.4 Linear regression

In applied research, often the aim is to estimate group differences or the effect of a certain independent

variable x on an dependent variable y. In such cases the computation of a sample mean of a sample

variance will not necessarily suffice to answer the research question. One often used approach to answer

research questions about the relationship between one or more independent variables and one dependent

variable, is using a linear regression model:

y = Xβ + ε, (9)

where y is the vector containing the data of the dependent variable, β is a vector of the regression coeffi-

cients of the q independent variables (including an intercept), and X is the matrix (n× q) with observed

data, including a column of 1’s for the intercept. Finally ε denotes the error or noise. When assuming

ε ∼N (0,σ2), the regression coefficients β are conventionally estimated as follows:

β = (X′X)−1X′y, (10)

where X′ denotes the transpose of X.

Computing this row-by-row works as follows: We can define A = X′X and B = X′y and compute the

update as follows:

θ ={A,B},

A :=A+xnxn′ ,

B :=B+xnyn.

(11)

To obtain the regression coefficients, β , one computes β = A−1B. This method is well known in the

parallel computing literature and is, for example, described in Chu et al. (2007).

Although fairly simple, computing the regression coefficients this way has a disadvantage: Every time

that β is computed, a matrix inversion is required. Especially when the number of independent variables

q is large, this itself can be a computationally intensive operation. We can address this by computing

the regression coefficients, β , directly online, using the Sherman–Morrison formula (Escobar and Moser,
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1993; Plackett, 1950; Sherman and Morrison, 1950):

θ ={Ainv,B},

Ainv :=Ainv−
Ainvxnx′nAinv

1+x′nAinvxn
,

B :=B+xnyn,

(12)

where Ainv is the inverted matrix A. Using this formulation we directly update the inverted matrix. In

practice one would use a small part of the data to create matrix A, invert this matrix, after which the

original matrix A can be discarded from computer memory. The “small” part of the data that is used

should at least have n > q + 1 for A to be non-singular. Obtaining the regression coefficients using

Equation 12 only requires a matrix multiplication: β = AinvB. In Appendix B, we implement online

linear regression in [R] using Sherman-Morrison formula. At the github page mentioned before, the

function is named lm online. The function requires two separate inputs, one for the dependent variable,

and one input for the independent variables. The latter can obviously be a vector of multiple variables.

3.4.1 Computation time of linear regression

To illustrate the difference between online and offline methods, Figure 1 presents a comparison of the

computational time required to compute the regression coefficients β in a data stream between the three

estimation methods discussed above. The x-axis denotes the number of data points seen so far. While

the scale of the y-axis (time) will heavily depend on the size of the model (the number of parameters

q) and the type of computing system used, the qualitative results presented here will hold in general:

the computational time needed to obtain an estimate of β , at each value of n, will grow quite quickly

(quadratic) for the offline method, while it grows only slowly for the online methods (linear). This result

clearly illustrates the computational benefits of online methods over offline methods. It can also be seen

that the direct online computation of the inverted matrix Ainv is faster than inverting the matrix at each

time-point. This latter difference however only affects the slope of the linear computation time.

— insert Figure 1 here —

3.5 Effect size η2 (ANOVA)

In many studies in sociology and psychology it is of interest to examine whether k distinct groups differ

from one another, for instance because one group of participants received a treatment while the other
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group of participants did not. When such experiments are carried out using modern interactive technolo-

gies, such as on social media platforms, sample sizes can grow very quickly. Traditionally researchers

often analyze the data from such group comparisons using an ANOVA approach. Between-subjects

ANOVAs can be computed fully online. Here we focus on the computation of the effect size η2 which is

given by:

η
2 =

SSb

SSb +SSw
,

=
SSb

SSt
,

=1− SSw

SSt
,

(13)

where SSb equals the sum of squares between the k groups, SSw is the sum of the sums of squares within

each of the k groups, and SSt is the total sum of squares. The last expression of Equation 13 shows that

computing both SSw and SSt in a stream suffices to compute the desired effect size.

Equation 6 already presented how sums of squares can be computed in data streams. The only com-

plexity introduced in the ANOVA example is the computation of the sums of squares within each of the k

groups. This requires computing the average within group k:

x̄k := x̄k +
xk,n− x̄k

nk
. (14)

which is only updated once a data point xk,n originates from group k. Subsequently, Equation 6 is used

within each group k, substituting x̄ with x̄k to compute SSw. The computation of the effect size or propor-

tion of variance explained (η2) in a data stream thus requires the following parameters:

θ :=


x̄k,nk

x̄,n,SSt ,SSw

 , (15)

where the top row of θ indicates the parameters at the group level (and hence need to be kept in memory

for each group k) and the bottom row indicates the global parameters, which are only single parameters

which need to be stored in memory. Thus, in total θ contains 2k+4 elements. We have implemented the

online computation of η2 in a function named etasq online. This function will compute η2 when two or

more groups are available. Note that this function also requires two inputs: the data point and to which

group this data point belongs. New groups can easily be included during the stream, without the data

analyst interfering in the analysis.

In order to compute the F-statistic online, one can use the information that is already available:

F =
(SSt −SSw)/(k−1)

SSw/(n− k)
. (16)
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It is important to note that repeated testing until a certain small p-value is found, which might be attractive

if results are available for each new data point, is considered a questionable research practice (Armitage

et al., 1989; John et al., 2012; Simmons et al., 2011), due to inflation of Type 1 error. For instance,

when a researcher decides to collect more data based on whether the ANOVA is significant 10 times with

significance level of 5% while new data are entering, the actual Type 1 error equals

α = 1− (1−0.05)10 = 0.401,

instead of the 5% she started with. Perhaps the most common correction of this inflated Type I error is

known as Bonferroni correction (Armstrong, 2014). Effectively this correction decreases ‘α’ as a function

of the number of tests to prevent an increase of Type I error.

We will continue our discussion of online learning methods with Stochastic Gradient Descent (SGD).

SGD is an optimization method which is useful to estimate more complex models when analytical solu-

tion are not available.

4 Online Estimation using Stochastic Gradient Descent

In the previous section we have discussed how to estimate, fully online, a number of statistics and models

that are often used in the analysis of sociological and psychological data. We have also illustrated the

computational advantages of online estimation for very large datasets and data streams. However, for each

of the methods discussed above we could derive exact summation methods; using simple algebra it was

possible to transform standard estimation methods to online variants. Unfortunately, this is not always the

case. Many estimation methods, especially those that require multiple iterations through a static dataset,

cannot exactly be implemented online, in part because even when using conventional offline analysis the

estimation is approximate. Examples are logistic regression or multilevel models. However, this does not

mean that we can only estimate very simple models online: there is a multitude of methods available for

the online estimation of more complex models. In this section we focus on Stochastic Gradient Descent

(SGD), a general online estimation method that can be used for estimation of more complex statistical

models.

To explain SGD, we will first discuss Gradient Descent (GD), an optimization method that is often

used in conventional offline analysis and provides a logical starting point for SGD. We provide a general

intuition to GD / SGD, and subsequently provide the technical details. Lastly, we will provide an applied
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example of fitting a logistic regression model using SGD, for which [R] code is provided in Appendix C.

4.1 Offline Gradient Descent

There are multiple ways to obtain estimates for parameters of statistical models, for instance using a least

squares approach (see, for example, Bretscher, 1995), using Maximum Likelihood estimation (ML), or

using the method of moments (e.g., Arvas and Sevgi, 2012). In the social sciences we often use the

maximum likelihood framework (see, for an introduction, Myung, 2003). In the maximum likelihood

framework, we want to obtain the parameter values which maximize the probability of the data. Assuming

independent observations, the likelihood function for many models takes the following form:

L (ζ |x1, . . . ,xn) =
n

∏
i=1

f (xi|ζ ), (17)

where ζ is a set of parameters, f () is a probability density function (PDF) (or probability mass function

in the discrete case), and as before x1, . . . ,xn denote the observations. In words, Equation 17 states that

the likelihood of ζ given the observed data is a product of the individual probabilities of each of the data

points. In practice it is often (much) simpler to obtain the maximum likelihood estimates by taking the

logarithm of the likelihood:

`(ζ |x1, . . . ,xn) =
n

∑
i=1

ln f (xi|ζ ), (18)

which effectively replaces the product term with a sum, and gives the same solution for the maximum

since the logarithm is a monotonic function. For some models, obtaining a maximum likelihood esti-

mate analytically, after the log-likelihood, is defined is straightforward: we take the derivative of the

log-likelihood, set it to zero, and solve for the parameters to obtain the required estimates. Effectively

this has already been demonstrated: the estimation of the sample mean, and of linear regression mod-

els as discussed in previous sections, actually are analytical maximum likelihood estimates given the

appropriate models (see for example, Gelman, 2007).

However, exact analytical solutions are not always available. In such cases one can resort to approx-

imate methods, which are also frequently applied in offline analysis. One such approximate algorithm is

called Gradient Descent, or actually Gradient Ascent because we use it in the context of a likelihood func-

tion which we want to maximize. Gradient Descent is the name most often used in the machine learning

literature and classically used to minimize the error.

The GD algorithm can be stated as follows:

ζ := ζ +λ∇`(ζ |x1, . . . ,xn), (19)
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where λ is a learn rate (also known as step size) chosen by the researcher and ∇l() denotes the gradient

(vector of first order derivatives) of the log-likelihood function. Intuitively this algorithm states that one

chooses starting values for each parameter and evaluates the gradient using these values. In the simple

case where ζ is scalar, and the gradient simplifies to the derivative, this evaluation gives information

regarding the slope of the log-likelihood function: if the slope is positive1 then the maximum can be

found at higher values of ζ and we can make a step towards higher values of ζ . If the slope at ζ is

negative, we need to step in the opposite direction: we need to choose a lower value. Using this intuition,

GD iteratively – passing through the dataset multiple times – takes steps towards the maximum of the log-

likelihood function. In the case that ζ is a vector, GD takes a step in q dimensions: for each parameter

(i.e., dimension) GD determines whether the slope of the derivative is positive or negative, accordingly

GD takes a step in the q dimensional space which causes the steepest ascent towards the maximum of the

likelihood function.

Figure 2 provides an illustration of a gradient in a single dimension (e.g., the derivative). On the x-axis

are possible parameter values and on the y-axis is the likelihood. The dashed curve is the likelihood of

a given parameter value. At each point on the curve we can evaluate the first order derivative. Figure 2

presents three evaluations of the first order derivative, including the tangent lines at each of the three points

(solid black lines). When the derivative has a positive number, the likelihood increases by increasing the

parameter value. Opposite, if the derivative has a negative value, the slope is negative, and the likelihood

increases by decreasing the parameter value. Obviously, the aim is to find the parameter value where the

derivative is equal to zero, in order to find the maximum. The second evaluation of the derivative in Fig.

2 contains two dotted lines. These dotted lines illustrate how the next evaluation is chosen. Based on

the sign (positive or negative), GD determines to increase or decrease the parameter value, and based on

the magnitude of the derivative and the learn rate GD determines by how much the parameter value is

changed.

Gradient Descent can be a very effective method of finding the maximum likelihood value of ζ ,

although it is not without difficulties. For example, the parameter λ controls the size of the steps and

has to be chosen carefully: a learn rate which is too large can be problematic since the algorithm could

make jumps over the maximum likelihood solution. A learn rate which is too small causes the algorithm

to take very small steps, and thus many iterations will be needed to obtain the maximum likelihood

estimate. It depends on the model (e.g., complexity of the model, complexity of the likelihood function,

1Here we are assuming the log-likelihood function to be well-behaved.
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etc.) what learn rate will be appropriate. One can choose for either a fixed learn rate or a learn rate which

is adaptive, for instance one could choose to let the learn rate decrease with the number of iterations. A

more extensive discussion on choosing the appropriate learn rate for complex models can be found in

Wilson and Martinez (2003) and Bottou (2010)

—insert Figure 2 here —

4.2 Online or Stochastic Gradient Descent

Gradient Descent provides an iterative, approximate method to find maximum likelihood estimates. De-

riving an effective online version of GD is as follows: instead of iterating over the full dataset multiple

times and updating ζ each iteration, the algorithm takes a small step to a more likely parameter value

every time a data point enters:

ζ := ζ +λ∇`n(ζ |xn), (20)

where we use `n to denote that we are evaluating the log-likelihood function. Hence, instead of updating

our parameters based on iterations using all data, we update based on each arriving data point. SGD will

converge to an unbiased estimate of the parameters as long as the order in which the data points arrive

is random (Bottou, 2010). This means that the process that generate the data, does not change over the

period in which the data are arriving.

Note that in the case that the dataset is no longer augmented, SGD can still be a useful tool: Analyzing

static Big Data using SGD circumvents that the entire dataset needs to be available in memory. By

simulating that the data enter a point at a time and letting the data stream in repeatedly, SGD can obtain

unbiased estimates while still estimating the parameters without seeing all data at once.

4.3 Logistic regression: an Example of the Usage of SGD

We present an example to illustrate SGD in which we are interested in the effect of independent variables

on a binary dependent variable. In applied research dependent variables are often binary, examples in-

clude whether and how people intent to vote (democratic versus republican, Anderson, 2000), or whether

or not people smoke cigarettes (Emmons et al., 1998). In the case of a binary dependent variable, often a

logistic regression model is chosen to describe the relationship between a binary dependent variable and
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continuous independent variables:

Pr(y = 1|X) = p(X) =
exp(Xβ )

1+ exp(Xβ )
, (21)

where p is the probability to score a 1 on y, Pr(y = 1|X) and is modeled as a function of X. Unlike

linear regression, logistic regression does not have a closed form solution to estimate the parameters β

using a maximum likelihood approach, and hence even for offline analysis approximate methods are used.

Estimating the parameters online can be done using SGD as follows. First, we specify the log likelihood:

`(β ) =
n

∑
i=1

yi log p(xi)+(1− yi) log (1− p(xi)). (22)

Second, we compute the gradient (see, for more details for instance Agresti, 2002):

∂`

∂β
=

n

∑
i=1

(yi− p(xi))xi, (23)

which in the case of offline estimation would be evaluated for all the data at once. When we use SGD to

estimate the β ’s, the following online algorithm is obtained:

θ ={β ,λ},

λ :=λ + f (λ ,xn),

β :=β +λ (yn− p(xn))xn.

(24)

Here we include λ , the learn rate, in θ . This will not be necessary for a fixed value of λ , but it highlights

that the learn rate could be a function of the data stream. Given an appropriate choice of λ , and a large

enough data stream, SGD will correctly estimate the parameters of interest (Bottou, 2010). See Appendix

C for an implementation of SGD for the estimation of logistic regression in [R]. We implemented SGD

for logistic regression in [R], the function is called sgd log and can be used to estimate logistic regression

in a stream.

5 Online learning in practice: logistic regression in a data stream

5.1 Switching to a safe well

To illustrate a logistic regression in a data stream, we use an example dataset, described in Gelman (2007).

The dataset contains information regarding households in Bangladesh and whether or not they switch to

a safe well to collect water. The wells were labeled safe if the arsenic level was low enough. Five years
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after the labeling of the wells, researchers collected data to study how many households had switched

from their own unsafe well to another safe well. Switching to another well was dependent on whether

owners of a safe well were willing to share their safe well and whether the households that did have an

unsafe well were willing to make some extra effort to go to the safe well. The relatively small dataset

consists of N = 3020 households. Among other variables, the dataset includes the distance in meters to a

safe well (Xdist ) from the household, and arsenic level that is present in the water (Xars).

In practice, choosing which variables to include from often a large set of variables, could be a chal-

lenging task on its own. Methods to deal with variable selection in a data stream are for instance the

online Lasso (Yang et al., 2010) or based on Ridge regression (Tarrès and Yao, 2014). For the current

example, we simulate that the data enter a point at a time by analyzing the data row-by-row using both

offline and online implementations to predict whether the household switched to a safe well (coded 1) or

did not switch (coded 0). The model we estimate contains two independent variables and an interaction

term:

Pr(y = 1|Xdist ,Xars) =
exp(b0 +b1Xdist +b2Xars +b3XdistXars)

1+ exp(b0 +b1Xdist +b2Xars +b3XdistXars)
, (25)

We thus estimate the four coefficients b0,b1,b2, and b3. The starting values for all four β ’s are zero.

5.2 Results

In Figure 3 we present the results of fitting a logistic regression in a data stream with four coefficients

and an adaptive learn rate, λ = 1√
n . The x-axes present the data stream and the y-axes present the esti-

mated parameter values. During the stream we monitored the estimated parameter values using a moving

average of 100 data points. These moving averages are presented in Figure 3.

The estimates of the effect of the arsenic level (b2) and the interaction term (b3) are very accurate

from the beginning of the data stream. The estimates of the intercept (b0) and the effect of the distance

to the next safe well (b1) require some more data. The dashed line is fluctuating, even towards the end of

the dataset: this is due to the fact that the learn rate is still quite large ( 1√
3020

= 0.018) for a dataset this

size. A smaller learn rate (or one that decreases more rapidly) would stabilize the SGD algorithm more,

but increases the risk of introducing more bias.

— insert Figure 3 here —
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5.3 Learn rates

To gain some insight in the sensitivity of SGD to its learn rates we also present the results of 4 different

rates: .1, .01, .001, and 1/n. We present the results of the four learn rates for the intercept, though the learn

rates were equal for all coefficients. Again, the x-axis presents the data stream and the y-axis the estimated

parameter value. Figure 4 presents the moving average of 100 data points of the parameter estimate

during the stream. Clearly the curve with the largest learn rate shows much more fluctuation. Much of

this fluctuation is already gone when we lower the learn rate to .01, although the online estimation of

the intercept remains close to the offline estimation of the intercept. All fluctuation has gone for the two

smallest learn rates. These two are a clear example of learn rates that are too low. In such cases the

estimates do not, or hardly change.

— insert Figure 4 here —

5.4 Starting values

Lastly we present the results of start the analysis with different starting values in Figure 5. On the x-

axis is the data stream presented, y-axis is the estimated parameter value, and the lines are the moving

average of 100 data points of the estimated parameter values. While the intercept had starting values {-2,

-1, 1, 2}, the remaining coefficients had starting values equal to zero and the learn rate remained 1/
√

n.

Here we present the influence of the starting values on the final parameter estimate. Although there is

some difference between the four lines, all four of them result in very similar parameter estimates. This

illustrates that SGD does not really depend (given an appropriate learn rate) on the starting values and

that the data dominate the results quickly.

— insert Figure 5 here —

For larger datasets (and for continuous streams, which is what we primarily focused on in this paper, the

performance of SGD is often accurate.

6 Considerations analyzing Big Data and Data Streams

In this paper we have discussed online learning as a way to deal with Big Data. However, some important

issues remain. Here we discuss two practical and two conceptual issues related to analyzing Big Data.
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Practically, it has to be noted that at this moment not many off-the-shelf statistical packages are avail-

able to actually analyze data streams. The currently available software, for instance (and not exhaustive)

Apache Storm (Toshniwal et al., 2014), Apache Spark (Karau et al., 2015), RStorm (Kaptein, 2014), S4

(Neumeyer et al., 2010), RapidMiner (Hofmann and Klinkenberg, 2013), KNIME (Berthold et al., 2007),

and MOA, (Bifet et al., 2010) often require extensive programming knowledge and focus mainly on the

infrastructure of analyzing large datasets. There is still a large gap between the methods and software de-

veloped by computer scientists, and those that can be used by social scientist to analyze their data streams

using models that they are accustomed to.

Second, we have to stress that for the application of online methods the analyst has to know be-

forehand what type of analysis and model is required to answer the research question. Online learning

methods make use of a limited set of quantities – referred to the elements of θ throughout this text –

to store the relevant information and to subsequently estimate model parameters. This means that it is

important to know what information is required before the analysis. Any information that is not stored is

forgotten and is impossible to retrieve if the data themselves are not stored.

A solution to this latter issue could be to run simultaneously different analyses and/or models, such

that at a later point in time a decision can be made which analysis or model to use. This, of course, does

require that enough computer memory is available to store the sufficient statistics of multiple models.

A frequently adopted practical solution to this in the computer science literature is to adopt a so-called

λ -architecture (Marz and Warren, 2013): the data stream is operated on online (for those computations

that where specified in advance), but also stored and can thus be analyzed offline at a later point in time

(often using parallelization methods to deal with the size of the dataset).

From a conceptual point of view, we do explicitly mention that we are not promoting repeated null

hypothesis significance testing in data streams; this should be avoided. When a researcher decides to stop

the data collection once she obtains a significant result of the hypothesis test, the Type I error rate increases

above nominal level (i.e., too many false positives, Strube, 2006). It is considered a questionable research

practice to repeatedly test for a significant effect and stop data gathering once the effect yields a p < .05

(John et al., 2012). When adopting an online learning approach we encourage researchers to focus on

obtaining precise estimates of the size of the effects of interest, in adherence to the APA guidelines

(Affairs and the Task Force on Statistical Inference, 1999), as opposed to null hypothesis testing.

Finally, it is not always feasible to translate all analyses from the offline framework to the online

framework. For instance, the analysis of binary dependent data, data that are nested within units, which
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are in the offline case often analyzed using logistic multilevel (or random effects-) models, have not

yet found a proper online synonym. Therefore future research should be aimed at translating complex

models, such as logistic multilevel models, to the online learning framework. Note that active research

work is carried out in this field, with for example recent publications describing online approximations of

the well-known Expectation-Maximization algorithm (Cappé and Moulines, 2009).

7 Discussion

Using new data collection methods and technologies, for instance experience sampling (Barrett and Bar-

rett, 2001), to collect social and psychological data have made data streams more apparent and more

prevalent in recent years. In this paper we discussed how social scientists can deal with these large

datasets, and how regular estimation methods can be applied in the context of continuous data streams.

We hope to have contributed to opening up the possibilities to answer both existing research questions

as well as new types of research questions using large datasets or continuous data streams. Note that we

have only touched upon a few methods which are used to analyze data streams; there are many more

techniques available to analyze data streams, for instance the Bayesian framework can in some cases also

be used to update the estimated parameters (e.g., Gelman et al., 2004). In the case of conjugate priors,

the posterior can be updated relatively easily. However, in the situation where the prior is not conjugate,

other methods such as particle filtering are required to update the posterior (Robert, 2015).

Despite the versatility of online methods as displayed in this tutorial, many challenges remain: com-

mon methods such as (latent) factor analysis, mixture models, or multilevel models are not easily esti-

mated online (See for a discussion and online approaches for multilevel models, Ippel et al., ress). A

possible way to deal with these types of analyses is to alter for instance the EM algorithm (Dempster

et al., 1977). Suggestions for parallel computations and more efficient procedures for the EM algorithm

have already been proposed (Cappé and Moulines, 2009; Neal and Hinton, 1998; Wolfe et al., 2008), and

this work should be extended to make the EM algorithm applicable for streaming data.

We hope that the current article motivates applied researchers to explore new research areas that are

opened up by the technological opportunity to monitor individuals in a data stream. We believe that data

streams can provide social scientists with many new insights in human behavior and can provide new

research areas to study human emotions and attitudes.
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Cappé, O. and Moulines, E. (2009). Online expectation-maximization algorithm for latent data models.

Journal of the Royal Statistics Society: Series B (Statistical Methodology), 71(3):593–613.

Carmona, C. J., Ramı́rez-Gallego, S., Torres, F., Bernal, E., Del Jesus, M. J., and Garcı́a, S. (2012). Web

usage mining to improve the design of an e-commerce website: OrOliveSur.com. Expert Systems with

Applications, 39(12):11243–11249.

Chu, C., Kim, S. K., Lin, Y., and Ng, A. Y. (2007). Map-Reduce for Machine Learning on Multicore.

In Schölkopf, B., Platt, J. C., and Hoffman, T., editors, Advances in Neural Information Processing

Systems, volume 19, page 281. Massachusetts Institute of Technology, 19 edition.

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining Stream Statistics over Sliding

Windows. SIAM Journal on Computing, 31(6):1794–1813.

Demchenko, Y., Grosso, P., De Laat, C., and Membrey, P. (2013). Addressing big data issues in Scientific

Data Infrastructure. Proceedings of the 2013 International Conference on Collaboration Technologies

and Systems, CTS 2013, pages 48–55.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via

the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38.

Efraimidis, P. S. and Spirakis, P. G. (2006). Weighted random sampling with a reservoir. Information

Processing Letters, 97(5):181–185.

Emmons, K. M., Wechsler, H., Dowdall, G., and Abraham, M. (1998). Predictors of smoking among US

college students. American journal of public health, 88(1):104–7.

Escobar, L. and Moser, E. (1993). A Note on the Updating of Regression Estimates. The American

Statistician, 47(3):192–194.

Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005). Mining Data Streams : A Review. SIGMOD,

34(2):18–26.

Gelman, A. (2007). Rich State, Poor State, Red State, Blue State: What’s the Matter with Connecticut?

Quarterly Journal of Political Science, 2(4):345–367.

23



Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004). Bayesian Data Analysis. Chapman&Hall/CRC,

2nd edition.

Hofmann, M. and Klinkenberg, R. (2013). RapidMiner: Data Mining Use Cases and Business Analytics

Applications. Chapman & Hall/CRC.

Ippel, L., Kaptein, M., and Vermunt, J. (2016 in press). Estimating random-intercept models on data

streams. Computational Statistics and Data Analysis.

John, L. K., Loewenstein, G., and Prelec, D. (2012). Measuring the Prevalence of Questionable Research

Practices With Incentives for Truth Telling. Psychological Science, 23(5):524–532.

Kaptein, M. (2014). {RStorm}: Developing and Testing Streaming Algorithms in {R}. The R Journal,

6(1):123–132.

Karau, H., Konwinski, A., Wendell, P., and Zaharia, M. (2015). Learning Spark. O’Reilly Media.

Killingsworth, M. A. and Gilbert, D. T. (2010). A Wandering Mind Is an Unhappy Mind. Science,

330(6006):932.

Marz, N. and Warren, J. (2013). Big Data: Principles and best practices of scalable realtime data

systems. Manning Publications.

Myung, I. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology,

47:90–100.

Neal, R. and Hinton, G. E. (1998). A View Of The Em Algorithm That Justifies Incremental, Sparse, And

Other Variants. Learning in Graphical Models, pages 355–368.

Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010). S4: Distributed stream computing platform.

Proceedings - IEEE International Conference on Data Mining, ICDM, pages 170–177.

Opper, M. (1998). A Bayesian Approach to Online Learning. In Saad, D., editor, On-Line Learning in

Neural Networks, pages 363–378. Cambridge University Press, Cambridge.
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Appendix A: Online correlation

> N <- 1000 #number of observations

> x <- rnorm(N, 5,2) #generate data

> y <- 1.5*x+rnorm(N)

> # because a correlation requires at least 2 points we start with n=1

> n = 1; xbar = x[1]; ybar = y[1]; SC = 0; SSx = 0; SSy = 0;

> for (i in 2:N)

+ {

+ dx <- (x[i]-xbar) #deviance x

+ dy <- (y[i]-ybar) #deviance y

+ n <- n+1 #update number of observations

+ xbar <- xbar+(x[i]-xbar)/n #update mean x

+ SSx <- SSx+dx*(x[i]-xbar) #update sum of squares for x

+ SC <- SC+(x[i]-xbar)*(y[i]-ybar)#update sum of cross products

+ Sxy <- SC/(n-1) #compute covariance

+ ybar <- ybar+(y[i]-ybar)/n #update mean y

+ SSy <- SSy+dy*(y[i]-ybar) #update sum of squares for y

+ sx <- sqrt(SSx/(n-1)) #estimate std.dev. x

+ sy <- sqrt(SSy/(n-1)) #estimate std.dev. y

+ rxy <- Sxy/(sx*sy) #estimate correlation

+ }

>
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Appendix B: Online linear regression

> N <- 1000 # generate data

> x0 <- rep(1, N)

> x1 <- rnorm(N, 5,2)

> x <- matrix(c(x0,x1),nrow=N)

> y <- 3+1.5*x[,2]+rnorm(N)

> A <- matrix(0,nrow=2,ncol=2); B <- c(0,0)

> #the as.matrix and as.numeric are required to get [r] running

> for (i in 1:N)

+ { #fit linear regression:

+ if(i<3)

+ { #update A as long as it is not invertible

+ A <- A+x[i,]%*%t(x[i,])

+ } #update B

+ B <- B + as.matrix(x[i,])%*%y[i]

+ if(i==3)

+ { #invert A when n>p

+ A_inv <- solve(A)

+ }

+ if(i>=3) #update inverted matrix A_inv

+ { #C is a scalar

+ C <- as.numeric((1+x[i,]%*%A_inv%*%x[i,]))

+ A_inv <- A_inv - ((A_inv%*%x[i,]%*%x[i,]%*%A_inv)/C)

+ beta <- A_inv%*%B #compute coefficients

+ }

+ }

>
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Appendix C: Logistic regression using Stochastic Gradient Descent

> N <-3000

> x <-rnorm(N,1,1)

> e <-rnorm(N)

> y <-rbinom(N,1, (exp(-2+1.5*x+e)/(1+exp(-2+1.5*x+e))))

> beta <- c(0,0)

> for(i in 1:N)

+ {

+ p <- exp(beta[1]+beta[2]*x[i])/(1+exp(beta[1]+beta[2]*x[i]))

+ beta <-beta + lambda*(y[i]- p) %*%c(1,x[i])

+ }

>
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Appendix D: Wells data example: Logistic regression using Stochastic Gradient Descent

> beta <- c(0,0,0,0)

> for(i in 1:nrow(wells.dat))

+ {

+ n <- n+1

+ x <- c(1,wells.dat[i,c(dist, ars, dist*ars)])

+ y <- wells.dat$switch[i]

+ p <- exp(sum(beta*x))/(1+exp(sum(beta*x)))

+ beta <-beta + 1/sqrt{n}*(y - p) %*%x

+ }

>

30



0 20 40 60 80 100

sample size, x100

el
ap

se
d 

tim
e

offline online online A_inv

Figure 1: Computation time of regression coefficients using offline estimation (solid line), online estima-

tion by inverting the matrix (online Ainv, dotted line), or online estimation by online updating the inverted

matrix (dashed line).
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Figure 2: Graphical display of the likelihood function. In cases where the direct maximization of the

likelihood function is difficult, an algorithm such as GD can be used to find the maximum. GD uses the

slope of the tangent and a learn rate to make steps towards the maximum of the function.
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Figure 3: Online (dotted) and offline (solid) estimated beta coefficients of logistic regression as more data

enter.
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Figure 4: Online (dotted) and offline (solid) estimated intercepts for learn rates: .1, .01, .001, and 1/n

coefficients of logistic regression as more data enter.
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Figure 5: Online (dotted) and offline (solid) estimated intercepts for starting values: -2, -1, 1, and 2

coefficients of logistic regression as more data enter.
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