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Abstract

Due to the ubiquitous presence of treatment heterogeneity, measurement error, and
contextual confounders, numerous social phenomena are hard to study. Precise control
of treatment variables and possible confounders is often key to the success of studies in
the social sciences, yet often proves out of the realm of control of the experimenter. To
amend this situation we propose a novel approach coined “lock-in feedback” which is
based on a method that is routinely used in high-precision physics experiments to
extract small signals out of a noisy environment. Here, we adapt the method to noisy
social signals in multiple dimensions and evaluate it by studying an inherently noisy
topic: the perception of (subjective) beauty. We show that the lock-in feedback
approach allows one to select optimal treatment levels despite the presence of
considerable noise. Furthermore, through the introduction of an external contextual
shock we demonstrate that we can find relationships between noisy variables that were
hitherto unknown. We therefore argue that lock-in methods may provide a valuable
addition to the social scientist’s experimental toolbox and we explicitly discuss a
number of future applications.

Introduction 1

Social science experiments are often affected by large measurement errors [1]. The 2

effects under study are complex [2] and the results of the experiments largely depend on 3

the experimental context [3] or on the particular group of people under study [4]. Due 4

to this complex nature of human behavior, even experiments demonstrating some of the 5

most compelling principles of human decision making have proven difficult to replicate 6

when conditions undergo minor changes or when researchers leave the confines of their 7

laboratories [5, 6]. Hence, it is no surprise that recently there has been an increased 8

interest in the development of experimental methods that are robust to noise or 9

contextual changes. Apart from general guidelines that focus on averting bad research 10

practices [7], these methods range from registering studies and adopting different 11

reporting standards [8–10] to the application of Bayesian statistics [11]. Considerable 12

work has been devoted to optimally choosing possible treatment values to efficiently 13

estimate effects [12–15] (for an extensive overview, we refer the reader to [16]), often 14

focusing on the reduction of variance in estimates obtained given an a priori assumed 15
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experimental setup and functional relationship between dependent and independent 16

variables [17]. With the functional form of the effect of treatment variables at hand, 17

these methods dictate at which points in treatment space stimuli should be 18

positioned [18]. In recent years, researchers have further turned their attention to 19

sequential methods that could determine the optimal design of experiments, the optimal 20

stimuli, or the optimal sample sizes even when the functional form of the effect of a 21

treatment variable is unknown (see for examples [13,19]). In those cases, treatment 22

assignments are continuously improved as the data are collected [20]. These adaptive 23

designs, and the associated early stopping of experiments [21], currently find application 24

in the health and life sciences [22]. 25

Adding to this vast body of literature, whose systematic review is out of the scope of 26

this paper, in recent work we have demonstrated [23] that, to extract a weak signal out 27

of a noisy floor in a social science experiment, one can also rely on a sequential 28

algorithm similar to the one that drives an electronic piece of equipment often used in 29

high- precision physics experiments—the “lock-in amplifier” [24,25]. The aim of that 30

work was limited to settling the debate around the efficacy and practical relevance of 31

the so-called “decoy effect” [26,27]. Given the goal of the experiment, we were able to 32

perform the entire measurement campaign on the basis of a simplified version of the 33

algorithm, which, albeit efficient, was not designed to show the full potential of the 34

method proposed. The algorithm, in fact, was only tested in sequential experiments with 35

one independent variable and one binary dependent variable. In physics and engineering, 36

however, lock-in amplifiers are often utilized in situations where a continuous variable 37

depends on an entire set of independent, continuous variables—a widely used feature in 38

the design of high-precision experiments that often must also be performed within noisy 39

conditions. In this paper, we show that, likewise, the method rudimentarily proposed 40

in [23], which we dubbed as “lock-in feedback” (LiF), can be extended to cover a much 41

broader range of social science experiments than that explored in our first test. 42

The problem we consider can be described as follows: while, in discrete interactions, 43

data are observed on a number of continuous independent variables that are under the 44

control of the experimenter and on some dependent variable whose value we seek to 45

maximize (or minimize), we need a method to choose, sequentially, the values of our 46

independent variables such that this maximum (or minimum) is both obtained and 47

maintained (the problem can be considered a stochastic optimization problem – see [28] 48

and references therein for an elaborate review). To demonstrate the enabling features of 49

LiF in this context, we selected a topic of study in which heterogeneity and noise 50

abound: we studied the subjective perception of beauty over multiple 51

participants [29, 30]. We confronted participants sequentially with a digital rendering of 52

a face, which can be manipulated in two dimensions (brow-nose-chin ratio and distance 53

between the eyes). We used LiF to find, simultaneously, the values of these two 54

dimensions that — on average — maximize the perception of subjective beauty. We first 55

examined whether LiF finds such an optimum, and subsequently introduce an external 56

shock to see whether LiF is robust. Our results demonstrate that the method can indeed 57

obtain and maintain the maximizing position in the attribute space. Furthermore, we 58

showed that an accurate analysis of the data obtained can reveal interesting and 59

unexpected details on the interplay between the variables of the experiment. 60

The remainder of this paper is organized as follows: In the next section we describe 61

the mathematics behind LiF for the one-dimensional, continuous, case. In the Methods 62

and Materials section we detail the current empirical study and our specific 63

implementation of LiF in multiple dimensions as used in this trial. The Results section 64

discusses how LiF can distil a signal of subjective beauty from an extremely noisy signal 65

and how it responds to external shocks. In the Discussion we highlight future 66

opportunities for the use of LiF in the social sciences. 67
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Lock-in feedback circuits 68

Let us assume that a dependent variable y is a continuous function f of the independent
variable x: y = f(x). Let’s further assume that—given that we can manipulate x—we
can oscillate x in time according to:

x(t) = x0 +A cos (ωt) (1)

where ω is the angular frequency of the oscillation, x0 its central value, and A its
amplitude. For relatively small values of A, Taylor expanding f(x) around x0 to the
second order, one obtains:

y(x(t)) = f(x0) + (x0 +A cos (ωt)− x0)

(
∂f

∂x

∣∣∣∣
x=x0

)

+
1

2
(x0 +A cos (ωt)− x0)

2

(
∂2f

∂x2

∣∣∣∣
x=x0

) (2)

which can be simplified to:

y(x(t)) = k +A cos (ωt)

(
∂f

∂x

∣∣∣∣
x=x0

)

+
1

4
A2 cos (2ωt)

(
∂2f

∂x2

∣∣∣∣
x=x0

) (3)

where k = f(x0) + 1/4A2
(
∂2f/∂x2

∣∣
x=x0

)
. It is thus evident that, for small oscillations, 69

y becomes the sum of three terms: a constant term, a term oscillating at angular 70

frequency ω, and a term oscillating at angular frequency 2ω. 71

Now consider the case in which f is continuous and only has one maximum and no
minimum (to keep things relatively simple, we only consider such well-behaved functions
in this paper). We are interested in finding the value arg maxx y = f(x), which we
denote with xmax, in the presence of noise. Modeling the latter contribution as ε ∼ π(),
where π is some probability density function and E[ε|x] = 0, we obtain:

y(t) = f(x(t)) + εt (4)

Following the scheme used in physical lock-in amplifiers [24], we can multiply the
observed y variable by cos (ωt). This is useful since after this multiplication, using eq. 3
and eq. 4, one obtains:

yω(t) = cos (ωt)

[
k +A cos (ωt)

(
∂f

∂x

∣∣∣∣
x=x0

)

+
1

4
A2 cos (2ωt)

(
∂2f

∂x2

∣∣∣∣
x=x0

)
+ ε

]
.

(5)

This can be written more compactly as:

yω =
A

2

(
∂f

∂x

∣∣∣∣
x=x0

)
+ kω cos (ωt) + k2ω cos (2ωt)

+ k3ω cos (3ωt) + ε cos (ωt)

(6)
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where

kω = k +A2/8
(
∂2f/∂x2

∣∣
x=x0

)
(7)

k2ω = A/2
(
∂2f/∂x2

∣∣
x=x0

)
(8)

k3ω = A2/8
(
∂2f/∂x2

∣∣
x=x0

)
. (9)

Next, by integrating yω over a time T = 2πN
ω , where N is a positive integer and T

denotes the time needed to integrate N full oscillations, one obtains:

y∗ω =
TA

2

(
∂f

∂x

∣∣∣∣
x=x0

)
+

∫ T

0

ε cos (ωt) dt (10)

Depending on the noise level, we are able to tailor the integration time, T , in such a way 72

that we can reduce the second addendum of the right hand of eq. 10 to negligible levels, 73

effectively averaging out the noise in the measurements. Under these circumstances, y∗ω 74

provides a direct measure of the value of the first derivative of f at x = x0. 75

This latter fact provides a logical sequential update strategy for x0: if y∗ω < 0, then 76

x0 is larger than the value of x that maximizes f ; likewise, if y∗ω > 0, x0 is smaller than 77

the value of x that maximizes f . Thus, based on the oscillation observed in yω we are 78

now able to move x0 closer to x = arg maxx f(x) using an update rule x0 := x0 + γy∗ω 79

where γ quantifies the learn rate of the procedure. Hence, we can setup a feedback loop 80

that allows us to keep x0 close to xmax. Note that due to the continuous oscillations 81

around x0 LiF effectively keeps “checking” whether the derivative of f() changes; this 82

allows one to follow possible changes in xmax over time. To summarize, Fig 1 introduces 83

LiF graphically: by systematically oscillating x we gain direct information regarding the 84

derivative of y even in situations with large noise. We can subsequently use this 85

information to optimally position x. 86

Fig 1. Graphical illustration of LiF.
LiF moves and maintains an independent controllable variable x onto the value xmax for
which a dependent variable y is maximized. The value of x is oscillated sinusoidally
around a central value x0. (a): If x0 < xmax, y oscillates at an equal frequency as x, in
phase (that is, a maximum value of x corresponds to a maximum value of y). (b): If
x0 > xmax, y oscillates again at the same frequency as x, but with an opposite phase
(that is, a maximum value of x corresponds to a minimum value of y). (c): If x0 = xmax,
y ceases to oscillate at the frequency of x, but will now start to oscillate at a doubled
frequency. LiF can detect the amplitude and the phase of the oscillation at a reference
frequency, and is therefore able to indicate whether x is smaller, larger, or equal to x0.

Materials and methods 87

In our evaluation of the utility of LiF for the social sciences, which was conducted 88

online, we asked N = 7402 participants to express their opinion on the physical 89

attractiveness of an avatar’s face (the dependent variable y). All faces were identical, 90

except for the brow-nose-chin ratio (first independent variable x1) and the eye-to-eye 91

distance (second independent variable x2). Our goal was to use LiF to sequentially and 92

simultaneously determine the values of x1 and x2 that maximize y. 93
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Participants 94

N = 7414 participants were recruited on Amazon Mechanical Turk — a web-based tool 95

that has been recognized as a trustworthy platform for social science 96

experiments [31,32]. We used its built-in system of qualifications to ensure that only 97

people with an approval rate of at least 90% and at least 100+ completed prior tasks on 98

that platform were allowed to participate. After providing consent, participants could 99

log in, perform the task as described above, fill in a non-mandatory set of demographic 100

questions, and receive a monetary compensation (.40 USD) for their participation in the 101

study. The study was part of a larger online survey consisting of 8 unrelated decision 102

tasks of which the current task was the last, and the other seven are not reported here. 103

Of our N = 7414 participants, N = 7402 completed the facial attractiveness task. Of 104

these, N = 21 did not fill out the demographics questions. Of the remaining 7381 105

participants, the largest group (42.4%) was between 25 and 34 years old. All 106

participants were older than 18, and 1.8% of our participants was older than 65. 107

Furthermore, 48.0% of the participants was female. The vast majority of our 108

participants resided in the United States (98.4%), and 89.1% received an education past 109

the high school level. 110

Data availability 111

All the data generated in this study, including the demographics, are available in the 112

replication package which can be found at 113

http://dx.doi.org/10.7910/DVN/Q0LJVI [33]. 114

Materials 115

As noted above, the experiment was conducted online through Mechanical Turk. Here 116

we describe in detail the stimuli used (e.g., the rendered face), and the obtained 117

measures. 118

Stimulus 119

To quantify the attribute space, we generated a grid of 100× 100 faces corresponding to 120

100 different values of x1 and x2. Fig 2 illustrates the resulting metrics. All faces were 121

obtained by means of FaceGen Modeler [34]. We used the “default” face as shipped 122

with the software — which is itself an average of a large set of facial models that is 123

known to be attractive [29] — as a starting point (the middle face in Fig 2). Next, we 124

adjusted the brow-nose-chin ratio and the distance between the eyes to create the outer 125

images (x1 = 1 or x1 = 100 and x2 = 1 or x2 = 100), and subsequently used 126

FantaMorph [35] to create intermediary faces. The resulting 10000 images, and a 127

javascript library to render the faces as a function of the attributes, can be found in the 128

replication package of this study. 129

Fig 2. Schematic representation of the stimulus used to examine the
performance of LiF.
Each of the faces is obtained by either increasing or decreasing the distance between the
eyes (denoted x1 in Methods section) or the elongation of the face (x2).

Fig 3 shows the primary screen of our experiment. On the left side of the screen, 130

participants saw the face they were asked to evaluate, whose attributes were 131

sequentially adjusted according to the LiF algorithm, as explained later in the text. LiF 132

was implemented using a software package for sequential experiments called 133
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StreamingBandit [36], which is publicly available at 134

https://github.com/MKaptein/streamingbandit. 135

Fig 3. Example of the web page shown to our participants.
Except for the left avatar, the design and setup of the web page remained the same
throughout the experiment. For the avatar, the brow-nose-chin ratio and eye-to-eye
distance were adjusted according to the LiF output. Participants could express their
opinion via the slider on the bottom.

Measurements 136

The main measurement in this study was the rating of subjective beauty of the rendered 137

face (y). This subjective evaluation was measured using a slider (see Fig 3, bottom) that 138

ran from 1 (not attractive) to 100 (very attractive). To anchor the scores and explain 139

the scale usage, we presented an example face with the notice that the attractiveness of 140

this face — which was the same for every participant — was approximately 25. Upon 141

arrival on the page the slider was positioned at a value of 40 and participants could 142

move the slider around before confirming their answer by clicking “continue”. 143

On clicking the “continue” button, participants were asked to complete the study by 144

filling out their gender, age category (18− 24, 25− 34, 35− 44, 45− 54, 55− 64, 65+), 145

country of residence, and highest completed education. Note that filling out these 146

demographic questions was not obligatory. 147

LiF implementation 148

Given the construction procedure of the face, it is legitimate to assume that there exist 149

a value of x1 (brow-nose-chin ratio) and a value of x2 (distance between the eyes) for 150

which the appearance of the face maximizes the average attractiveness score ȳ. We will 151

indicate those two maximizing values with x1M and x2M . Our goal is to find those two 152

a priori unknown values using LiF. Here we describe how we extended the general LiF 153

method to find an optimum in two dimensions. For the sake of simplicity, we will 154

assume that, close to x1M and x2M : 155

y(x1, x2) = A1 (x1 − x1M )
2

+ y10 +A2 (x2 − x2M )
2

+ y20 (11)

where x1M , x2M , A1, A2, y10, and y20 are unknown constants. Let us suppose that the 156

values of x1 and x2 as seen by the ith participant are selected according to: 157

x1,i = x̃1,i + δ1 cos (ω1i) (12)

158

x2,i = x̃2,i + δ2 cos (ω2i) (13)

where i ranges from 1 to the total number of participants N ; x̃1,1, x̃2,1, ω1, ω2, δ1, and 159

δ2 are six suitably chosen constants set at the start of the experiment; and x̃1,i and x̃2,i 160

have to be sequentially adjusted to find the value of x1M and x2M . Note that, in this 161

way, we are building the premises to make LiF run on the sequential number of the 162

participants (i) in lieu of real-time. In other words, the concept of oscillation period is 163

not to be intended as the interval of time needed to complete the sinusoidal cycle but as 164

the number of people who have to respond to the stimulus to complete the sinusoidal 165

cycle, regardless the time it will take for those people to take that action. Plugging 166

eq. 12 and eq. 13 into eq. 11, one can conclude that the expected response of the ith 167
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participant is given by: 168

yexpectedi =A1 (x̃1,i + δ1 cos (ω1i)− x1M )
2

+ y10+

A2 (x̃2,i + δ2 cos (ω2i)− x2M )
2

+ y20 + ξi
(14)

where we have added the term γi to include the noise generated by the personal 169

preference of the ith participant. Eq. 14 yields: 170

yexpectedi =2A1 (x̃1,i − x1M ) δ1 cos (ω1i) +

2A2 (x̃2,i − x2M ) δ2 cos (ω2i) +

A1 (x̃1,i − x1M )
2

+A2 (x̃2,i − x2M )
2

+

A1δ
2
1 cos (2ω1i)

2
+
A2δ

2
2 cos (2ω2i)

2
+

A1δ
2
1

2
+
A2δ

2
2

2
+ y10 + y20 + ξi

(15)

Note that the amplitude of the oscillations at ω1 is proportional to how far the attribute 171

x1 is from the ideal value. Similarly, the amplitude of the oscillations at ω2 is 172

proportional to how far the attribute x2 is from the ideal value. One can thus use a LiF 173

to isolate these contributions from the others and drive a feedback circuit to 174

sequentially bring x̃1 and x̃2 closer and closer to x1M and x2M , respectively. 175

Following this approach, at the start of the experiment we first collect the value of y 176

for the first n1 participants, where n1 is a constant number set a priori, with n1 << N . 177

During this first phase, x̃1,i is kept constant: x̃1,1...n1
= x̃1,1. For each value of i from 1 178

to n1, we multiply the experimental value of y times cos (ω1i), and sum the resulting 179

products from i = 1 to i = n1: 180

yexperlock1,n1
=

n1∑
i=1

yexperi cos (ω1i) (16)

Following the working principle of LiF, we then use the result of eq. 16 to set the value 181

of x̃n1+1: 182

x̃1,n1+1 =

∑n1

i=1 x̃1,i
n1

− γ1yexperlock1,n1
(17)

where γ1 is a constant that we fixed a priori. Then, after the (n1 + 1)th participant has 183

answered, we calculate the summation of eq. 16 and eq. 17 for i that goes from 2 to 184

n1 + 1, and apply the same procedure to determine the values of x̃1,n1+2. Iterating the 185

procedure further via the generic equations: 186

yexperlock1,j =

j∑
i=j−n1+1

yexperi cos (ω1i) (18)

and 187

x̃1,j+1 =

∑j
i=j−n1+1 x̃1,i

n1
− γ1yexperlock1,j (19)

one should observe that the value of x̃1,i eventually reaches x1M . Applying, in parallel, 188

a similar algorithm to the variable x2, one can simultaneous bring x̃2,i to x2M . 189

To understand why the feedback loop described above should converge to the 190

optimal values, one can calculate the expected signal that the lock-in algorithm should 191

give if the experimental values of y followed exactly the expected trend 192

(yexperi = yexpectedi ). Plugging eq. 15 into eq. 18, one obtains: 193
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yexpectedlock1,j = A1δ1

n1∑
i=j−n1+1

(x̃1,i − x1M ) + o.t. (20)

where o.t. indicates terms that, for a sufficiently large value of n1, become negligible. 194

Inverting eq. 20, one can indeed verify that: 195

x1M ≈
∑n1

i=j−n1+1 x̃1,i

n1
−
yexpectedlock1,j

A1δ1n1
. (21)

For a suitable choice of γ1, γ2, δ1, and δ2, the algorithm presented should thus be able 196

to complete the task. Table 1 presents our choices for tuning parameters used in our 197

experiment. 198

Table 1. Values of the tuning parameters used for the LiF algorithm in this
study.

Lock-in 1 ω1 = 2.63; n1 = 150; δ1 = 8; γ1 = 0.0006
Lock-in 2 ω2 = 2.51; n2 = 150; δ2 = 8; γ2 = 0.0006

Ethics statement 199

Our experimental procedure was approved by the Research Ethics Review Board of the 200

Faculty of Economics and Business Administration of the VU Universiteit Amsterdam. 201

Results 202

Our experiment had two objectives. First, we intended to test whether LiF would 203

indeed converge towards an optimal value of two treatments simultaneously in the face 204

of considerable noise. Second, we wanted to examine whether LiF would be able to 205

withstand external shocks. Fig 4 displays the raw answers on the rating scale as 206

provided by our N = 7402 participants in sequence. The gray line shows the raw scores 207

and illustrates lucidly the extremely noisy setting: raw ratings range from 0 to 100 at 208

almost any configuration of the actual face. The solid black line presents a moving 209

average rating over a sample of 150 participants; this line clearly describes an upwards 210

trend—indicating increasing average attractiveness—over the first 2000 data points 211

after which the (average) ratings seem to stabilize. The “dip” in mean ratings around 212

i = 3750 is caused by our external shock, as described later in the text. 213

Fig 4. Raw answers on the rating scale.
Grey line: Evolution of the observed attractiveness y as a function of the participant
number i. Black line: Same data after taking a running average over 150 participants.

To inspect the performance of LiF for choosing the treatment values that maximize 214

the (average) perceived subjective attractiveness of the rendered face, in Fig 5 we report 215

the values of x̃1,i and x̃2,i and their progression as participants sequentially rate the 216

attractiveness of the face. In the first phase of the experiment, we set x̃1,1 = 20 and 217

x̃2,1 = 20, and let LiF run until i = 3636. By this time LiF seems to have converged 218

quite convincingly around values of x̃1 ≈ 55 and x̃2 ≈ 60—in agreement with the 219

literature on subjective beauty [37]. These results demonstrate the ability of LiF to find 220

optimal treatments values in this extremely noise scenario (first goal of our paper). 221
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Fig 5. Evolution of x̃1 and x̃2 as a function of the participant number i.
The vertical dashed lines indicate the instant in which we forced x̃1 = 90 (i = 3637).
The two horizontal lines indicate the values of x̃1 and x̃2 that optimize the avatar’s
appearance as obtained from the first phase of the experiment. The avatars below the
graph show the starting and arriving points of the two phases of the experiment.

Our second objective was examined by introducing a shock at i = 3636; at this point 222

in time we set x̃1,3637 = 90, and observed the lock-in feedback recovering from this 223

perturbation until i = N = 7402. Fig 5 clearly shows how LiF “recovers” quickly from 224

the perturbation, and finds the optimal value of the treatment; hence, LiF is able to 225

both position treatments sequentially and respond aptly to (contextual) shocks. 226

Finally, it is interesting to note that as soon as we set x̃1 = 90, the variable x̃2, 227

which was already optimized in the first phase of the experiment, starts to decrease 228

before moving back towards the optimal value. We believe that this behavior is due to 229

the fact that the true function that connects y with x1 and x2, which we simplified as 230

the sum of two independent parabolas in eq. 11, also involves cross terms that mix the 231

two variables. Hence, the optimal value of x2 actually depends on the current value of 232

x1. This finding uncovers a—to our best knowledge—not previously reported 233

dependence between the brow-chin-nose ratio and the eye-distance in their joint effect 234

on the attractiveness of a face. Apparently, for a large distance between the eyes, faces 235

with slightly smaller brow-nose-chin ratio are preferred. Thus LiF, even while treating 236

both attributes independently, allowed us to demonstrate a dependency between the 237

two attributes manipulated in this study. 238

Conclusions 239

We have shown how the algorithm of lock-in feedback amplifiers, which is routinely used 240

in high-precision physics experiments [38], can be applied to social science experiments. 241

In this setting the algorithm allows experimenters to optimally choose treatment values 242

in a multidimensional treatment space even in the face of large noise. Furthermore, we 243

have demonstrated that this approach can quickly recover from external 244

perturbations—an important feature that increases its potential for social science 245

experiments in which contextual changes are likely to introduce such external 246

perturbations. In the current study we track the (group)-average subjective evaluation 247

of beauty; we assume that this is relatively constant within the study given shared 248

timing and context. LiF would theoretically be able to measure fluctuations in the 249

subjective experience within individuals if their opinions were measured sequentially 250

over time; an approach not further explored here. Finally, we have demonstrated that 251

the method can unveil non-trivial, unexpected correlations between the variables 252

involved in a social experiment. 253

LiF potentially provides a simple-to-implement, effective, and robust method to any 254

situation in which either the value of (a set of) dependent variable(s), or of a possible 255

confounding variable, needs to be set such that the effect under study (or some function 256

thereof) is maximized (or minimized). Examples include, but are not limited to, 257

determining the value of continuous treatments in economic decision experiments 258

(offered prices, product features, etc. [39]), determining optimal dosages of medical 259

treatments, determining optimal values of health promotion feedback (see [40]), or 260

choosing the speed at which stimuli are displayed in reaction tasks such that effects are 261

magnified (such as [41]). Note that LiF can be used not only to position treatments 262

during experiments but can also be of use in practical applications [23]. 263
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Interestingly, lock-in feedback might even shed light on the relationship between 264

different variables. In the current paper we uncovered a relationship between the 265

brow-chin-nose ratio and the eye-distance that has not been reported before. Other 266

fields of applications may include the design of optimal strategies in game theory and 267

the analysis of correlations in network. Note that studying this relationship by means of 268

a conventional experiment would have been challenging; one would have to a) discretize 269

the two independent variables to create a grid of possible combinations of values, and b) 270

obtain a large number of observations within each cell to average out the large noise. 271

This would quickly lead to a necessity of an extremely large subject pool, or, conversely, 272

to low power. Since LiF was already operating in a sensitive region of parameter space, 273

the method allowed for finding a novel relationship quite effectively. 274

We believe our work demonstrates the feasibility of LiF as a versatile sequential 275

treatment selection method in the social sciences. Potentially, the use of LiF will aid 276

replicability of social science findings, and contribute to a greater external validity of 277

findings by allowing precise choice of treatment in multiple contexts. 278
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