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Abstract

Bootstrapping, in its various forms, often provides a computationally feasible approach to quantifying estimator uncertainty. Recent
online (e.g., row-by-row) bootstrapping procedures are of special interest computationally, and the online clustered bootstrap has
proven highly effective in dealing with dependent data. In this paper we explore the utility of using online, clustered, bootstrapping
procedures in sequential decision problems; uncertainty quantification is a key element that drives the exploration behavior of many
sequential decision policies. Specifically, we explore the utility of using an online bootstrap distribution as an alternative to the—often
computationally challenging—full posterior distribution in a often used sequential decision policy called Thompson sampling. Thomp-
son sampling provides a solution to bandit problems in which new observations are allocated to arms with the posterior probability that
each arm is optimal. While sometimes easy to implement and asymptotically optimal, Thompson sampling is often computationally
demanding in large scale bandit problems, and its performance is dependent on the parametric model fit to the observed data. We
introduce bootstrap Thompson sampling (BTS), a generic black-box, heuristic method for solving bandit problems which modifies
Thompson sampling by replacing the posterior distribution used in Thompson sampling by a bootstrap distribution.

1. Bootstrap Thompson sampling (BTS)

Bandit problems, in which a set of actions have varied
stochastic payoff and an experimenter aims to maximize the
payoff over a sequence of selected actions, are prevalent.
For example, in online advertising the action of displaying a
specific ad out of a set of multiple ads for the current visitor
of the website can be regarded as a bandit problem: each
ad has an uncertain payoff, and a priori the ad with the high-
est pay-off is unknown. The experimenter has to trade off
exploration and exploitation: displaying ads — and observ-
ing the subsequent response — about which little is known
(exploration) increases one’s knowledge about the success
rate of that ad. However, displaying ads which one already
believes to be effective (exploitation) likely increases the
overall payoff. Exploration and exploitation need to be bal-
anced over the course of multiple interactions. Formally,
bandit problems can be described as follows: at each time
t = 1, . . . , T , we have a set of possible actions A. After
choosing at ∈ A we observe reward rt. The aim is to find
a policy to select actions such that the cumulative reward
Rc =

∑T
t=1 rt is as large as possible.

The BTS Algrotihm for bandit problems, is presented in
above. At each step t, the algorithm first chooses the best
arm according to a single, uniformly randomly selected,
bootstrap replicate. Then the algorithm updates a random
subset of the replicate models using the observed data
(âı, rt), which can involve routing subsets of observed data
to each replicate. This is one concrete way that the algo-
rithm can be implemented in parallel.

2. Heteroscedastic Errors

We expected BTS to be more robust to some kinds of
model misspecification, given the robustness of the boot-
strap for statistical inference. To examine this benefit of
BTS we compare the performance of BTS and Thompson
sampling in simulations of a factorial Gaussian bandit with
heteroscedastic errors. The data-generating process we
consider here has three factors, zt = {z1, z2, z3}, with two
levels l ∈ {0, 1} each. Thus, in our simulation a ∈ {1, . . . , 8}
referring to all 23 possible configurations. The true data gen-
erating model is r = Zβ + ε where ε ∼ N (0,Zσ2). We use

Z =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1


, β =



1.00
−0.20
0.10
0.20
0.10
0.05
0.10
0.01


, (1)

and σ2 = {1, 0, 0, γ, 0, 0, 0, 0}. Here, Z is the design matrix,
with each row corresponding to one of the 8 arms, β is the
vector of coefficients for the linear model including all inter-
actions. Finally, we use σ2 to denote the vector of variance
components for each column of Z. We vary γ to create dif-
ferent degrees of heteroscedasticity.

The Figure presents the difference in cumulative reward be-
tween BTS and Thompson sampling for t = 1, . . . , 104 for
varying degrees of heteroscedasticity, γ ∈ {0, .25, .5, 1, 2, 4},
with 100 simulations. Even with a relatively small degree
of misspecification (e.g., γ = 0.5) and with small t (e.g.,
t = 1000), BTS has significantly greater cumulative reward
than Thompson sampling. As expected, this difference in-
creases with γ.
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3. Dependent Data

Bootstrap methods are easily adapted to use with depen-
dent observations (e.g., repeated measures, time series,
spatial dependence), and so are widely used for statisti-
cal inference in these settings, especially when this depen-
dence is otherwise difficult to account for in inference. For
an initial examination of value of BTS in cases in which the
observations are dependent, we replicate the previous sim-
ulation study, but with the following changes: (a) we set γ =
0 to make the data-generating process homoscedastic, but
(b) we now draw for each unit u = 1, . . . , 1000 a unit-specific
(e.g., “person-specific”) set of parameters βu ∼ N (β,Σ),
where β is the vector of coefficients as given in Equation
1, and Σ = diag(λ2) is the diagonal co-variance matrix for
the coefficients. We vary the degree of unit-specific hetero-
geneity by setting λ ∈ {0.10, 0.25, 1.00, 2.00}. We run 500
simulations for t = 1, . . . , 104. At each t we uniformly ran-
domly select unit u, leading to mean of 10 observations per
unit per simulation run. Thus the true generative model is a
hierarchical model with unit-specific intercepts and effects.
Varying λ in this data-generating process leads to differ-
ences in the fraction of units for which the optimal arm is not
the average optimal arm. To illustrate, for λ = 0, arm 7 is the
best arm for 100% of units, but for λ ∈ {0.10, 0.25, 1.00, 2.00},
this is approximately 65, 52, 31, 22, 17, and 15% respec-
tively.
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The Figure presents the results of our simulations. Thomp-
son sampling is implemented as before, and thus does in-
ference assuming the observations are independent, while
BTS uses a bootstrap clustered by unit, requiring only that
observations of different units are independent. As ex-
pected, for moderate and large values of λ, BTS signifi-
cantly outperforms Thompson sampling. In these cases
Thompson sampling is clearly anticonservative and thus too
greedy.

Conclusions

We have presented BTS as a computationally attractive and extremely flexible alternative to Thompson sampling to introduce explo-
ration in sequential decision problems. The main advantages of BTS over competing policies are: I) BTS, by relying on the large body
of theory on scalable and robust bootstrapping methods can deal with complex data structure (heteroscedasticity, dependencies, etc.)
in a computationally attractive way, and II) BTS allows one to use any predictive model for which point estimates can efficiently be
computed in large-scale bandit tests.
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