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1

Introduction

In the last decade authoritative scientific journals such as Science (Ng et al., 
2009) and the New England journal of Medicine (Hamburg and Collins, 2010), 
as well as legislative bodies such as the American Food and Drug Adminis-
tration (FDA) and the European Union (EU), have stressed the importance of 
personalized healthcare. By personalizing medical treatments, where the term 
treatment covers a broad range of interventions, from medication to education to 
eHealth, we can improve their effectiveness, decrease costs, and provide better 
care. 

The idea that personalization is effective is based on what I would call—in 
modern methodological jargon—the existence of treatment effect heterogene-
ity: we believe that the effect of a specific treatment is different for different 
patients. In the last decades, driven by advances in a wide range of fields from 
genomics to medical imaging, the existence of treatment effect heterogeneity 
has been firmly established. To give a concrete example, in August 2011, the 
FDA approved the drug Zelboraf to treat metastatic melanoma (see, for example 
Chapman et al., 2011). Metastatic melanoma is a highly aggressive form of skin 
cancer with a low 5-year survival rate. Zelboraf is a drug that works by inhibit-
ing a gene mutation, however, this mutation is only found in approximately half 
of the patients. Zelboraf is ineffective for those without the mutation. Luckily 
we can find the mutation, and we can accurately predict for which patients the 
treatment will be effective. 

Examples such as Zelboraf that show that personalizing treatments can signi- 
ficantly improve their effectiveness. Indeed, the Zelboraf case demonstrates 
the benefits of providing the right treatment to the right patient, at the right dose at 
the right time; the very definition of personalized healthcare as used by the EU 
(Scholz, 2015). Regretfully, this definition is, in my opinion, hardly informative: 
it does not provide any guidance on how to make personalized healthcare a re-
ality. Also, the definition does not clarify the meaning of the term “right”; this 
despite the excessive use of the word in a single sentence. 

Inspired by the EU definition I will provide an alternative, and more construc-
tive, definition of personalized healthcare. This alternative definition is useful 
since it allows us to pinpoint the key methodological and statistical challenges 
we face when trying to make personalized healthcare a reality. After providing 
this alternative definition, I will use it to analyze our current approach to per-
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sonalizing treatments which is based on the randomized controlled trial (RCT). 
I will highlight both the advantages and disadvantages of this approach. Subse-
quently, I will formulate an alternative approach to choose the right treatment 
for the right patient. I will highlight why this novel method is both challenging 
and promising, and I will use it to formulate a research agenda for the field of 
“computational personalization”. 
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In an attempt to redefine personalized healthcare, let us revisit the EU’s defini-
tion: “Providing the right treatment to the right patient, at the right dose at the 
right time”. Apparently both the patient and the time are important, as well as 
the choice of treatment and the associated dose. Thus, we can start setting up 
our problem by noticing that we are looking for some relationship, some map-
ping, between these and some associated health outcome. We can more formally 
denote this as 

{patient, time, treatment, dose} f−! outcome.

 
Here, admittedly, I am already inserting the idea that we need to interpret 
“right” with respect to some outcome of interest. 

Based on my own experience personalizing e-Health applications, under  
the supervision of prof. Emile Aarts, prof. Panos Markopoulos, and prof.  
Boris de Ruyter, I will change this notation to read:

outcome

f − {patient, time, treatment, dose}

r

f − {patient, time, treatment, dose}

r

f − {x, a}
r = f(x, a; ✓),

where, in the first line, I merely reorder the left and right hand side terms. In 
the second line I substitute “outcome” for the more convenient—because it is 
shorter—letter r which stands for reward. Next, I add some structure: the inputs 
of the mapping can be partitioned into two sets that are of separate interest: 

1.  The first set contains all the elements that we cannot control, often called 
the context, which I denote using the letter x. This set includes a description 
of the current patient and the state of the world at this point in time. 

2.  The second set contains all the elements that we can control, denoted using 
the letter a. These are the actions we can take, and this set contains of the 
treatment, the dose, and the timing. 

2

A definition of 

personalized healthcare
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I don’t know whether EU agrees with this partitioning: by stressing the impor-
tance of the right patient they seem to imply that we can achieve personalized 
healthcare by selecting patients. I think we should treat every patient who ar-
rives at our doorstep. 

Finally, in the last line, I emphasize that the mapping that we are interested in 
can often be parameterized in some way; I am using θ to denote these parame-
ters. My interpretation of this notation is broad: f() can be an extremely flexible 
mapping, θ can have a very large dimension, and the inputs can be extremely 
diverse. 

Let’s assume that we know the mapping f(), and thus we know the exact out-
come of every treatment for every person. In this case personalized healthcare 
simply boils down to doing the following:  

argmax

a
f(x, a)

which means nothing more than selecting the treatment that maximizes the 
outcome for a given patient. 

This statement is a bit over-simplified: in actuality we interact with multiple 
people, often multiple times, and at each interaction we select the best action. 
Hence, the notation 

TX

t=1

argmax

a
f(xt, at),

 
where T is our total number of interactions, indicates that we aim to maximize 
the outcome over the whole population. 

In the remainder of this talk I will take Equation 1 as very definition of person-
alized healthcare. Personalized healthcare is a simple, albeit possibly very high 
dimensional, maximization problem. 

Admittedly, this is slightly abstract, so perhaps this is easier to follow when 
visualized. If we focus on a low-dimensional example we can visualize the re-
lationship between the context, the actions, and the rewards. Figure 1 shows a 
possible relationship between the weight of a patient (the context in this exam-
ple), the dosage of medication (the action), and the probability of survival (the 
reward). The Figure indicates that low weight patients require a low dosage of 
medication to be effective, and that too high a dose can lead to adverse effects. 
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Figure 1: Simple visualization of a possible relationship between context, action, and 
rewards. This example displays the (hypothetical) relationship between the weight of 
a patient, the dosage (in Mg) of some medication, and the survival rates; clearly, for 
light patients the optimal dose is different than for heavy patients.
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The panels on the bottom of Figure 1 illustrate the personalization challenge: 
when a child weighting 20 kilograms presents herself, effectively the context is 
fixed and hence we are looking at a 2d slice of the 3d plot. Subsequently, we can 
look at the possible dosages for this specific child, and we find that the optimal 
dosage choice is a bit over 1/2Mg. If, at the next interaction, we are presented 
with an adult weighting in at 60 kilograms, we look at another slice of our plot 
and see that the optimal dose is close to 1Mg. Although this is a very simplified 
situation, this example illustrates that as long as we know the function that re-
lates the context and the actions to the rewards, we can simply pick the action 
that leads to the highest outcome for every patient we encounter. 

Now, what did we gain by our formalism? For one, the fancy mathematical nota-
tion to denote “the right treatment and the right time” makes us look scientific. 
However, we have also made some actual progress: we defined “right” in terms of 
maximizing some outcome and we split up our set of variables into those that we 
have under our control (the dose) and those that we do not have under our control 
(the weight). This is a methodologically important distinction. Also, we highlight-
ed the sequential nature of personalization; we select treatments at each interac-
tion. These notions allow us to better understand the problem that we are facing. 

 
2.1 The challenges of treatment personalization.  
In the stylized example we just looked at personalizing treatments seemed easy: 
we just compute which action has the highest reward. In reality however, per-
sonalizing is not easy. The most important reason that today most treatments 
are still “one- size-fits all” (Hamburg and Collins, 2010; Ng et al., 2009) is the 
simple fact that we, in actuality, do not know the relationship between between 
the context, our actions, and the resulting rewards. In short, f() in Equation 1 is 
not known to us. This greatly complicates computing which treatment has the 
highest reward. 

Since we do not know f(), we have to learn f() using the inherently limited and 
often noisy data that we have at our disposal. Thus, we are not faced with a 
seemingly doable maximization problem, but rather we are faced with a chal-
lenging sequential learning problem: as we go along and treat patients we need 
to gradually learn which treatment is right for whom. This sequential learning 
is challenging for three reasons: 

1.  High dimensional learning from noisy data: The first challenge we face in 
developing personalized healthcare is that we need to learn f() using lim-
ited and often noisy data. This learning problem is complicated by the fact 
the space of the problem is tremendous: in practical terms this means that the 
relevant background characteristics of a patient are not just the weight, but 
rather the weight, age, genetic make-up, their culture, etc. etc. Similarly for 
the possible treatment; we do not just choose a dose, but we choose a combi-
nation of interventions, medicines, and treatments. Thus, any method to de-
velop personalized healthcare needs to a) deal with the inherent uncertainty 
that arises from the limited number of observations that are available, and 
b) find an effective way to deal with the extremely large space of the learning 
problem. 

2.  Learning causal relationships: The second challenge is presented by the 
fact that what is learned from observational data might not properly reflect 
the knowledge we seek, namely, the effect of changing our treatments. To 
illustrate, suppose we currently, and naively, set out to model the relation-
ship between chemotherapy (the action) and survival rates (the outcome) 
for breast cancer patients (the context) using existing registry data. In the 
observational data we will find that those who do not receive chemotherapy 
have a higher survival rate than those who do. However, this higher survival 
rate is not caused by refraining from chemotherapy; actually, patients with a 
mild tumor are both less likely to receive chemotherapy and more likely to 
survive. The relation present in the observational data is thus explained by 
a common cause and does not quantify the causal effect of the treatment. 
Since we need to learn a function that explicitly contains the effect of the 
“things that we can control”, we need to be very careful about this distinc-
tion. 

3.  Balancing learning and earning: Thirdly, compared to so-called supervised 
learning—a fairly well understood machine learning task in which a com-
puter learns a function between some observed input and some desired 
output (Hastie et al., 2013)—our problem is complex since we do not have 
any data regarding the outcomes of actions that we have never actually tried 
out. Hence, anytime we select a treatment, we need to balance choosing the 
best treatment as dictated by our current knowledge with the value of trying 
out new treatments that allow us to learn more about f(). This problem is 
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known as the “exploration-exploitation trade-off” or simply the “earning vs. 
learning problem”. The problem arises because we have to learn f() based on 
data with so-called “bandit feedback”; we do not observe what would have 
happened if we had administered another treatment (see, e.g., Ortega and 
Braun, 2013; Agrawal, 2012; Osband, 2015; Bastani and Bayati, 2015; Eckles 
and Kaptein, 2014). 

These three problems, learning complex functions that properly model the 
causal effects of interest, based on bandit feedback, comprise the core data  
science challenges involved in personalized healthcare. 
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Since we already have successful instances of personalized healthcare—such as 
the Zelboraf treatment for melanomas that I introduced earlier—we must have 
solved, or at least addressed, the challenges involved. Let us have a good look at 
how we currently address these problems. 

In evidence based medicine today we find that the RCT constitutes our highest 
level of evidence (Evans, 2003; Grol and Grimshaw, 2003). The RCT is concep-
tually simple: randomly, for example by flipping a coin, we administer treat-
ment A to half of our patients, and treatment B to remaining half. Next, after 
treating a pre-determined number of patients n in this way with either treat-
ment A or B, we examine the outcome of interest in both groups. If, on average, 
in group A the outcome is higher then in group B, we select treatment A. For 
the dose finding example this would boil down to treating 100 patients with a 
low dose, say 1/2Mg, while another 100 patients would receive a high dose, say 
1Mg. Based on our example function given previously (see Figure 1), a naive 
RCT would conclude that the 1Mg dosage outperforms the 1/2Mg dose, despite 
the adverse effects for children.

Let us examine in detail how the RCT addresses the three problems highlighted 
above: 

1.  High dimensional learning from noisy data: The RCT tackles the problem 
of high-dimensional learning from noisy data in two ways; first, the RCT 
heavily limits the problem space by pre-selecting a very small number of 
actions and contexts. The RCT compares only two treatments, and, only 
when the focus is on personalized healthcare, includes a very small number 
of descriptions of the context. When there is no focus on personalization 
the context is fully ignored. Exactly which treatments and which contexts 
to focus on is determined by our theoretical understanding of the process 
involved. Second, after limiting the problem space based on our existing the-
ories, RCTs use a fairly simple method of dealing with noise; if, assuming 
that the two treatments have the exact same outcome, the actually observed, 
or a more extreme outcome is unlikely—quantified using the magical p-val-
ue that some of you might be familiar with—we reject the null hypothesis 
that the treatments are equally effective, and adopt whichever treatment had 
the highest average outcome in the trial. 

3

Our current approach to 

personalized healthcare: 

the RCT
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2.  Learning causal relationships: The RCT tackles the problem of learning the 
causal effect of the actions by virtue of its use of randomization. By “flipping 
the coin” we determine who receives which treatment, and we make sure 
that this treatment assignment is not confounded by patient characteristics 
such as the “severity of the tumor” as in the breast-cancer example. 

3.  Balancing learning with earning: To appreciate how the RCT solves the 
last challenge, we have to view the RCT not just on its own, but we have to 
include the treatments that are administered after the RCT has been carried 
out. For example, after the Zelboraf trail, we now routinely treat melanoma’s 
using Zelboraf. Approached in this way we can see that the RCT balances 
learning and earning by first spending a pre-determined number of interac-
tions on learning (the trial itself), and subsequently moving to earning: after 
the trial, the results are accepted with full certainty, and future patients will 
receive the treatment that performed best during the trial. 

At this point I have to note that the RCT is not inherently a method for person-
alization; rather, it is a method for selecting one out of two competing treat-
ments. However, by doings RCTs within subgroups of patients—for example 
within all children with a low weight—this method is now the gold standard to 
select treatments for specific subgroups of patients. 

3.1 Advantages of the RCT
Now that we understand how the RCT addresses our three challenges, we can 
evaluate the quality of this approach. Let me start by discussing the strengths of 
the RCT. 

The RCTs approach to high dimensional learning is appealing since by severely 
restricting the space of actions and context the outcomes of the trial become 
transparent and human-understandable. While obviously the quality of our 
restrictions of space depend heavily on the quality of the theories that we use—
something that I fear is hard to assess—the outcomes of the an RCT are at the 
very least easily interpretable: the survival rate in the patient group that re-
ceived 1Mg was higher than in the group that received 1/2Mg, and hence you get 
1Mg. Next, the RCTs approach to the problem of learning causal relationships 
is extremely solid (Rubin, 1978; Imbens and Rubin, 2015). There is no better 
method to assess causal effects than randomization, which is exactly what the 

RCT excels at. Finally, the RCT’s approach to balancing earning vs. learning is 
practically appealing: by moving all the learning to the beginning, into the trail, 
and all the earning to the resulting guidelines, we make a nice and convenient 
deterministic choice. 

3.2 Disadvantages of the RCT 
Our analysis also allows us to identify drawbacks of the ICT. First of all, the sin-
gling out of very small subsets off all possible actions and context in sequential 
RCTs—since in actuality we build our knowledge one RCT at a time—basically 
constitutes a limited and naive strategy for learning f(). We effectively assume 
that only very small parts of the context and treatment are important and we 
ignore all others. Already in our simple weight-dose example introduced earlier, 
the RCT would only examine a small number of specific points in the 3d space, 
as opposed to examining or modeling the whole plane of outcomes. Further-
more, perhaps implicitly, we assume that the relationship between context and 
actions is only as complex as our theories allow us to understand. 

Another disadvantage of the RCT originates from our insistence on a hard cut-
off between learning and earning. The RCT—and the deterministic decision 
strategy inspired by the null hypothesis significance test—leads us to either 
adopt or ignore a new treatment, possibly for some subgroup of people, with 
certainty. However, these certain decisions are made based on noisy data, and 
hence full certainty is too much to ask. Given limited and noisy data there is 
always a non-zero probability of making the wrong choice. And, the more we try 
to personalize treatments, the more severe this problem becomes since at the 
level of small groups of patients we have very limited data at our disposal. If we 
truly believe in treatment heterogeneity, then we have to accept that each patient 
is unique and hence we will never have a large homogenous sample available to 
make deterministic decisions. 

Regretfully, this not the last disadvantage of the RCT as a method of solv-
ing Equation 1; because of our determinism, the data that we collect after a 
trial also turn out to be very hard to re-use: once the probability of receiving 
chemo-therapy for breast cancer patients with a severe tumor is 1, and for those 
with a mild tumor is 0, we cannot use the future data to evaluate alternatives 
simply because no such data is collected. Our deterministic decisions prohibit 
our future learning. 
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I would like to sketch a possible alternative method to the RCT. Note that I will 
only provide an intuition for this alternative method; some technical details are 
provided in the footnotes of the transcript of this talk. 

I propose to do the following: First of all, I propose to use a modern and flexible 
machine learning model to learn the relationships between the actions, context, 
and rewards. In recent years we have seen a revolution in our abilities to learn 
flexible, extremely high-dimensional functions (Hastie et al., 2013; Pratola et 
al., 2016; Mohammadi and Kaptein, 2016; Bishop, 2006), and hence there no 
need to artificially reduce the model space by focusing on very small numbers 
of patient or treatment characteristics. 

Second, we can utilize novel breakthroughs in our understanding of causality; 
as it turns out, it is strictly not necessary to resort to uniform random allocation 
as is done in the clinical trial. Rather, as long as we can compute and store the 
probability of receiving a treatment conditional on the patient characteristics, 
we can use the collected data to estimate causal effects (Bang and Robins, 2005; 
Funk et al., 2011). 

Finally, we can use novel methods of balancing earning and learning: as op-
posed to going instantly from pure learning to a deterministic choice as in the 
RCT, we can gradually balance the two. An allocation scheme called Thompson 
sampling allows us to, over time, gradually change the probabilities of receiving 
different treatments. Thompson sampling selects treatments with a probability 
that is proportional to its effectiveness. Thus, as we gain more evidence that an 
action is effective, we will increase the probability of selecting it. 

This way we can optimally balance exploration and exploitation (Ortega and 
Braun, 2013; Osband, 2015; Eckles and Kaptein, 2014).1 

This computational approach to treatment personalization can be realized by, every 
time we visit a doctor (or go to a website for health information, or use an motiva-
tional eHealth application), sending our data—the context—to a central server. 

Next, this central server estimates a model that relates the context, the actions, 
and the rewards. This model is our estimate of the illustrious function f() in 
our definition of personalization. Finally, the central server selects an action 

 

4

A sketch of an alternative: a 

computational approach to 

personalization
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based on this model while balancing learning and earning. Note that as a result 
of this method we never make a definite choice between different treatments. 
However, we do make the best choice we can given all the information available. 

Admittedly, this computational method to personalization might look a bit dis-
tant from reality, but the models I propose, and the methods by which earning 
and learning can be balanced, are already, at least conceptually, developed. Also, 
we can already transmit large amounts of data around the world in a split sec-
ond; large web companies like Facebook and Google do this constantly. Hence I 
believe that, in the near future, my suggestion is technically feasible. 

4.1 Disadvantages of computational personalization 
Contrary to the RCT, I will start by discussing the disadvantages of my computa-
tional approach to personalization. Two disadvantages easily come to mind, the 
first being “which variables, thus which contexts and which actions, should we 
include in such a gigantic machine learning model?”, And the second “which 
outcomes should we actually care about?” I believe these are genuine questions, 
but they are not disadvantages of the method: these questions equally need an-
swers when designing an RCT. Actually, my proposed approach allows for much 
greater flexibility than the RCT: we can include a larger number of contextual 
variables and we can potentially collect data regarding multiple outcomes. Thus, 
if anything, my proposal makes answering these questions easier as opposed to 
harder. However, there are more serious concerns: First of all, my proposed ap-
proach looses, at least superficially, all notions of transparency. It is not at all clear 
anymore why a specific patient, at some specific point in time, receives a specific 
treatment. This will be hidden away in some “black-box” learning model. While 
the underlying logic can theoretically still be distilled from the model parameters, 
such distilling is not easy. And, by loosing transparency, we probably also loose 
accountability; if we don’t know why we are subscribing some treatment, than who 
should we hold responsible in case of a calamity? 

Next, the proposed method, at least in theory, never leads to a definite, deter-
ministic, choice. Hence, there will always be a non-zero probability of receiving 
a specific treatment. This might be fine for things like eHealth coaching and 
health education, but we will be presented with a logistic nightmare if we in-
tend to keep all possible pills available at all pharmacies all around the world for 
the unlikely event that we should administer one of them. 

By abandoning the RCT assessing causality becomes more challenging. How 
can we still be sure that the model we learn is actually learning the effects of 
our treatments, and not learning some spurious, non-causal, relationship? In 
recent decades this problem has however largely been solved (Bang and Robins, 
2005; Funk et al., 2011; Pearl, 2009; Imbens and Rubin, 2015): we have recently 
come to realize that as long as we know the probability of receiving a treatment, 
we can validly estimate causal effects even when treatments are not uniformly 
randomized. 

Finally, implementing computational personalization at the scale that I am 
suggesting will not be easy; the underlying models and methods are still being 
developed, and many details are not yet finished. For example, we need to be 
able to deal large volumes of dependent data that are collected continuously; 
a technical topic my recently graduated PhD student Lianne Ippel has made a 
large contribution to (Ippel et al., 2016b,a). Furthermore, we need the infra-
structure to make all of this technically work; recently Jules Kruijswijk and 
Robin van Emden have gone through great lengths to build an open source plat-
form that allows us to do exactly this, but it needs further development (Kaptein 
and Kruijswijk, 2016; Kaptein et al., 2016). Next, we need to develop methods 
to fit these models faster, on large datasets; work that is currently being done by 
my colleagues and collaborators Matthew Pratola and Reza Mohammadi (Pra-
tola et al., 2016; Mohammadi et al., 2015). We also need to understand much 
better how we can combine multiple outcomes measures into a single reward; a 
problem Xynthia Kavelaars will be contributing to in her PhD project. This is a 
promising project that I am honored to supervise together with dr. Joris Mulder. 

4.2 Advantages of computational personalization 
By now you might wonder why I have bothered to propose this new method. 
My proposal seems plagued with challenges and needs lots of work; probably 
enough work to keep me and my PhD students busy for the next few years. Cyn-
ically, you could imagine that I propose this method precisely because I want to 
keep myself and my PhD students busy, but this is not the core motivation. My 
actual motivation comes from the advantages of the method. Or, to be more pre-
cise, its single advantage: with this method we will have a better outcome. Now 
that’s a bold statement, and one that I cannot quantify for the scale at which I 
am suggesting the method to be used. The number of future interactions, the 
number of possible actions, and the number of meaningful contextual factors is 
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simply too large to say anything precise. However, at smaller scales, for simple 
versions of the personalization problem, we can quantify the benefits. 

The performance of a personalization method can be measured in terms of its 
regret: the realized outcome of a method compared to the outcome we could 
have achieved with full information. Suppose we compare the RCT to my 
proposal in a simple case in which we choose one of two possible treatments 
for 1000 (homogenous) patients, and where the true probabilities of success are 
.4 and .5. In the worst case we would obtain an expected 400 successes, while 
in the best case we expect to obtain 500 successes. Thus, a strategy that always 
selects the poorest treatment obtains a regret of 100, while randomly picking 
treatments results in an expected regret of 50. In this setting, the RCT has an 
expected regret of about 36, while my proposal weighs in at about 12; a differ-
ence of 25 successes as shown in Figure 2a. This difference results from a bet-
ter balancing of earning and learning. Furthermore, the difference is magnified 
when we include a context and focus on smaller and smaller groups of patients; 
this is exactly what we want to do when personalizing our treatments. 
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Figure 2: Three panels showing the superior performance of computational methods 
for personalization and the RCT. See main text for explanations of each panel.

Scaling the problem to 10.000 decisions and 10 possible treatments (with 
success probabilities .5 and .4 for the best two, and .3 for those remaining), the 
superior performance of computational personalization is even more striking: 
the regret of the RCT is 800, while that of computational personalization is only 
400, as displayed in Figure 2b. Even more interestingly, the practice of sequen-
tial, binary RCTs identifies the best treatment in only 3/4 of the cases while for 
my proposed method the probability of finding the best treatment converges to 
1. This latter difference is caused by stepping away from simple binary tests to 
learn a complex relationship, as is the case with the RCT, towards examining 
and comparing multiple treatments in one go. Also this difference is magnified 
when we consider personalized treatments since the more we expand the con-
text-action space, thus, the more characteristics of the patient or the treatment 
we consider, the poorer the performance of the RCT will be. 

Finally, as long as we store the probabilities of receiving a specific treatment 
conditional on the context, we can effectively re-use the data that we collect; 
something that is almost impossible when using RCTs. A recent theoretical 
analysis by Agarwal et al. (2016) shows that such re-use of the data reduces 
estimation errors of our models by orders of magnitude. Figure 2c shows the 
estimated standard errors as a function of the number of datapoints collected 
using the different methods. Simply put, using a computational approach to 
personalization allows us to learn more efficiently than using repeated RCTs. 
These simple computations show that the RCT is grossly outperformed by my 
suggested alternative. Furthermore, it is reasonable to expect that the RCT will 
comparatively suffer more from making the problem more realistic than the 
method I propose. Thus, if anything, the presented differences in expected out-
comes are underestimates of the actual outcomes rather than overestimates. 
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I am well aware that I have just introduced a fairly abstract alternative to the 
RCT as a means of advancing knowledge and making decisions in the health 
and life sciences. Obviously, I understand that making a change to the funda-
mental way in which we develop our knowledge is tremendously scary. How-
ever, I hope that by now you are convinced that recent advances in research 
methods, statistical learning, and data science, have provided us with methods 
for personalizing treatments that will undoubtedly safe lives compared to our 
current practice, solely at the costs of transparency and accountability. For 
many, these costs are too big to bear. These researchers cling to the RCT as the 
only valid and understandable way of advancing our knowledge. I disagree; I 
think we should actively examine radically different alternatives. We should not 
refrain from using new computational methods because they have challenges, 
but rather we should try to address these challenges. Bluntly put, sticking to the 
RCT as the only means of realizing personalized healthcare in a day and age in 
which we have the technical and methodological tools at our disposal to grossly 
outperform the RCT, is unethical. 

In this talk I have tried to honestly display that the alternative, computational, 
approach to personalization is still in its infancy. We need to develop it further. 
Because of this, I am tremendously honored that with the generous help of CZ 
health-insurance, and with talented and motivated PhD students such as Bas 
Willemse, Ylva Hendriks, Jules Kruijswijk, Robin van Emden, and Xynthia Ka-
velaars, we will be working on making computational personalization a reality 
in the context of eHealth interventions. We will focus specifically on eHealth 
since in this application area the outcomes of interest are relatively easily meas-
ured, and the treatments, consisting of the feedback provided on the screens 
of users, is often easily and cheaply experimented with. I truly hope that in the 
next 4 to 5 years we will be able to provide a convincing proof of concept that, 
using computational personalization, we can indeed be more effective than 
using our current standards. And, if we are, I hope that our novel data science 
methods to personalize eHealth ultimately allow us to improve healthcare in 
general. 

5

Conclusion
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It is a custom to take some time at the end of a speech like this to thank all of 
those who have provided support throughout the years. However, so many peo-
ple have supported my work and inspired my thinking that these are too many 
to mention by name; any attempt to do so in a reasonable time would undoubt-
edly leave out mentors and colleagues that have been of great importance to me. 

So, I am going to keep this very brief, next to my PhD students and my former 
supervisors, whose names I have already mentioned during this talk, I want to 
explicitly thank prof. Jeroen Vermunt for his continued support and for pro-
viding myself, and the whole research methods and statistics group at Tilburg 
University with a great place to work. I also would like to thank prof. Arjan van 
der Born for providing me with the amazing opportunity to start a research lab 
at JADS, and for his continuous support of my research line. I want to thank 
my inspiring collaborators, I guess you know who you are, and I want to thank 
my parents for the amazing job they did raising my brother and myself, and for 
instilling the continuous urge to be critical, skeptical, and weary of authority, 
traits that would likely get me in trouble everywhere but in a challenging aca-
demic environment. Finally, Rosa, thanks. 

 I have spoken.

6
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7

End notes

1  Let me briefly give some more details to those who have a background in data science; in practice, I 
propose to use a flexible machine learning model such as the Bayesian additive regression tree model, or 
shorthand BART, which can be denoted as follows: 

r =

mX

j=1

g(x, a; ✓) + ✏.

In this model the rewards are modeled as a function of both the context and the actions using a sum over 
m binary decision-tree models (see Chipman et al., 2010, for details on BART). Trees provide a flexible 
modeling approach that can handle a wide variety nonlinear relationships and a large number of inputs. 

While admittedly at this point in time neural network models seem to be more popular, the Bayesian 
specification of the BART model allows one to fully quantify ones posterior belief regarding the parame-
ters of this model based on our prior beliefs and the likelihood of the data using Bayes theorem

P (✓t+1|Dt+1) / P (xt+1, at+1, rt+1|✓t)P (✓t|Dt),

where using Dt I denote the full dataset up to time t and hence theoretically provides a principled way for 
sequential learning. Furthermore, this model effectively guards against overfitting by virtue of a prior 
restricting trees of large depth, and allows us to balance earning and learning using a method known 
as Thompson sampling (Thompson, 1933; Eckles and Kaptein, 2014; Kaufmann et al., 2012; Ortega and 
Braun, 2013); When applying Thompson sampling we choose our actions with a probability proportional 
to our posterior belief that the action is the best action which can be formalized as: 

Z h
E(r|a, ✓) = max

a0
E(r|a0, ✓)

i
P(✓|D)d✓

Thompson sampling provides an easy to implement, and asymptotically optimal method of balanc- ing 
earning and learning. As long as we apply this scheme, and store the probability of receiving an action 
at each point in time for each patient (know as the propensity-score), we can not only use this scheme to 
select actions, but also to create a dataset that we can re-use in offline evaluations of alternative decision 
policies. 
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