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“Providing the right treatment to the right patient, at the right
dose at the right time”



Outline:

I Defining personalized healthcare

I Analysis of the Randomized Controlled Trial (RCT)

I A computational approach to personalization



Defining personalized
healthcare



{patient, time, treatment, dose} f−→ outcome.



outcome
f←− {patient, time, treatment, dose}

r
f←− {patient, time, treatment, dose}

r
f←− {x , a}

r = f (x , a; θ),

The reward, r, is a function of the context, x, (the characteristics of the patient), and the actions, a, (the
treatment).



arg max
a

f (x , a)



T∑
t=1

arg max
at

f (xt , at),

We choose the treatments such that we maximize the reward over all treatments.
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Why is this difficult?



I High dimensional learning from noisy data

I Learning causal relationships

I Balancing learning and earning
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The Randomized Controlled
Trial



I Advantages:

1. Transparent and understandable
2. Causal effects through randomization
3. Practically appealing

I Disadvantages:

1. Examines a very small number of options
2. Poor balancing of earning and learning
3. Inability to (re-)use data after trial
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A computational approach



Disadvantages:

1. Loss of transparency: black-box

2. Practical challenges: no deterministic choices

3. Causal effects not guaranteed: need additional analysis

4. Computationally challenging
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Why would we want this?
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Conclusion




