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In comparing characteristics of independent populations, researchers frequently expect a certain
structure of the population variances. These expectations can be formulated as hypotheses with equal-
ity and/or inequality constraints on the variances. In this article, we consider the Bayes factor for testing
such (in)equality-constrained hypotheses on variances. Application of Bayes factors requires specification
of a prior under every hypothesis to be tested. However, specifying subjective priors for variances based
on prior information is a difficult task. We therefore consider so-called automatic or default Bayes factors.
These methods avoid the need for the user to specify priors by using information from the sample data.
We present three automatic Bayes factors for testing variances. The first is a Bayes factor with equal priors
on all variances, where the priors are specified automatically using a small share of the information in the
sample data. The second is the fractional Bayes factor, where a fraction of the likelihood is used for auto-
matic prior specification. The third is an adjustment of the fractional Bayes factor such that the parsimony
of inequality-constrained hypotheses is properly taken into account. The Bayes factors are evaluated by
investigating different properties such as information consistency and large sample consistency. Based on
this evaluation, it is concluded that the adjusted fractional Bayes factor is generally recommendable for
testing equality- and inequality-constrained hypotheses on variances.

Key words: default Bayes factor, fractional Bayes factor, heterogeneity, heteroscedasticity, homogeneity
of variance, inequality constraint.

1. Introduction

In comparing multiple independent populations, applied researchers commonly focus on the
population means, while treating the population variances as nuisance parameters. However, by
disregarding the variances one runs the risk of overlooking crucial information in the data about the
differences in the populations. In fact, there are often reasons to expect certain relations between
the variances of independent populations. For example, males have frequently been found to be
more variable than females on a variety of measures, which has been attributed to genetic as well
as social factors (e.g., Lehre, Lehre, Laake, & Danbolt, 2009). Arden and Plomin (2006) therefore
expected boys to be more heterogeneous in their intelligence than girls. This expectation can be
formalized in the inequality-constrained hypothesis H1 : σ 2

1 < σ 2
2 , where σ 2

1 and σ 2
2 denote the
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population variance of girls and boys, respectively. Potential competing hypotheses would be
H0 : σ 2

1 = σ 2
2 and H2 : σ 2

2 < σ 2
1 , that is, there is no difference in heterogeneity and girls are

more heterogeneous than boys, respectively. In another study, Aunola, Leskinen, Lerkkanen, and
Nurmi (2004) expected that the variance of students’ mathematics abilities either increases or
decreases across grades. These expectations can be translated into the two competing hypotheses
H1 : σ 2

1 < · · · < σ 2
J and H2 : σ 2

J < · · · < σ 2
1 , where σ 2

j denotes the population variance in grade
j and J is the number of grades to be compared. The reasoning behind an increase in variances
is that skilled students improve their mathematics abilities over time more than students who are
less skilled, which increases interindividual differences. Alternatively, systematic instruction at
school might help less skilled students catch up, which would result in a decrease in variances
over time.

While the examples in the previous paragraph deal with existing groups, constrained hypothe-
ses on variances are conceivable in experimental studies as well. For example, one may expect
variances in treatment groups to be larger than the variance in a control group because subjects
may react differently to a certain treatment (e.g., Grissom, 2000). This suggests testing a hypoth-
esis of the form H1 : σ 2

1 < σ 2
2 = σ 2

3 , where σ 2
1 denotes the variance in the control group and σ 2

2
and σ 2

3 denote the variance in treatment groups 1 and 2, respectively. We could test H1 against
H2 : σ 2

1 <
(
σ 2
2 , σ 2

3

)
to determine whether there is evidence in favor of equal treatment group vari-

ances in addition to the assumption that both variances are greater than the variance in the control
group. The comma symbol in H2 indicates that there is no constraint on the relation between σ 2

2
andσ 2

3 . Another potential competing hypothesiswould be the null hypothesis H0 : σ 2
1 = σ 2

2 = σ 2
3 .

In case there is just one treatment that is administered in two different intensities, one may expect
that an intense treatment results in a larger variance than amild treatment. This suggests testing the
order-constrained hypothesis H3 : σ 2

1 < σ 2
2 < σ 2

3 , where group 2 undergoes a mild treatment and
group 3 an intense treatment. In the above examples, testing constrained hypotheses on the group
variances in addition to testing group means gives a more complete picture of the relationships
between the groups.

In this article, we consider the problem of testing T ≥ 2 hypotheses on the variances of
J ≥ 2 independent populations. The hypotheses are of the form

Ht : RE
t σ 2 = 0 ∧ R I

t σ
2 > 0, t = 1, . . . , T, (1)

where σ 2 = [σ 2
1 · · · σ 2

J

]T
is a J -dimensional vector containing the population variances. Let qE

t

and q I
t denote the number of equality and inequality constraints on the variances in σ 2 under Ht ,

respectively. Then, RE
t (R I

t ) is a q
E
t × J (q I

t × J ) matrix containing the coefficients for the equality

(inequality) constraints on the variances under Ht and 0 = [
0 · · · 0]T is a qE

t -dimensional (q I
t -

dimensional) vector of zeroes. We consider tests where each row of RE
t and R I

t is a permutation
of {−1, 1, 0, . . . , 0}. Thus, we test constraints with equal coefficients for the variances (e.g.,
σ 2
1 < σ 2

2 ), but not complex mathematical constraints such as 2σ 2
1 < σ 2

2 , σ 2
1 + σ 2

2 < σ 2
3 , or

σ 2
1

/
σ 2
2 < σ 2

3

/
σ 2
4 . Note that the formulation in Eq. (1) includes the classical null and alternative

hypothesis as special cases.
The multiple hypothesis test in Eq. (1) is much more general than the standard test of a

null hypothesis where all variances are equal against an alternative where the variances are unre-
stricted. Besides Böing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017), the testing
framework in Eq. (1) has not yet been considered in the literature for variance components. This
is quite surprising given the central role of variance components in the statistical sciences (see
also Carroll, 2003). The test is particularly useful in a confirmatory setting when one has expec-
tations about possible patterns of the population variances. For example, when it is expected that
the heterogeneity across patients increases when the intensity of the treatment increases, say,
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H1 : σ 2
1 < σ 2

2 < σ 2
3 , and the hypothesis is against the null hypothesis H0 : σ 2

1 = σ 2
2 = σ 2

3 , testing
these hypotheses directly against each other is the preferred method over an omnibus test with
additional post hoc testing. When the omnibus test results in a rejection of the null hypothesis,
post hoc testing can result in low power (due to Type I error corrections, e.g., Bonferroni) or con-
flicting conclusions, for example, σ 2

1 = σ 2
2 is not rejected, σ 2

1 = σ 2
3 is not rejected, but σ 2

2 = σ 2
3

is rejected. Directly testing the order-constrained hypothesis against the null hypothesis avoids
such issues and gives a direct answer to the research question.

In this article, we consider the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995) for the
testing problem formulated in Eq. (1). The Bayes factor is a Bayesian hypothesis testing criterion
that is becoming increasingly popular. It has a number of advantages over alternative approaches
to hypothesis testing like null hypothesis significance testing bymeans of p values and hypothesis
testing bymeans of information criteria like the AIC (Akaike, 1973) and the BIC (Schwarz, 1978):
First, unlike p values, Bayes factors are able to quantify the evidence in the data in favor of a
hypothesis (including null hypotheses) relative to another hypothesis (Berger & Sellke 1987;
Wagenmakers, 2007). Second, using Bayes factors it is straightforward to simultaneously test
multiple (non-)nested hypotheses (Berger & Mortera, 1999). This property is not shared by p
values either. Third, Bayes factors are consistent in the sense that they converge to the true
hypothesis as the sample size increases. This also holds for a true null hypothesis. The AIC, on
the other hand, is not consistent (e.g., O’Hagan, 1995), and p values are only consistent if the null
hypothesis is false. Fourth, Bayes factors function as an Occam’s razor by automatically taking
the parsimony of (in)equality-constrained hypotheses as in Eq. (1) into account. By contrast, p
values have no inherent mode of taking the parsimony of a hypothesis into account. The AIC
and the BIC are able to incorporate the parsimony introduced by equality constraints, but not
inequality constraints (Mulder et al., 2009). Consequently, they do not provide a solution to the
testing problem in Eq. (1).

Application of Bayes factors requires the specification of a prior distribution under every
hypothesis to be tested. Often, however, prior information about the parameters is not available or
a researcher would like to refrain from adding prior knowledge. But even when prior information
is available, it is a difficult and time-consuming task to translate this into mathematical functions
such as prior distributions (e.g., Berger, 2006). Researchers therefore developed so-called auto-
matic or default Bayes factors. These methods enable the computation of Bayes factors without
having the user specify proper subjective priors. Automatic Bayes factors have been developed
for various testing problems frequently encountered in practice. Klugkist, Laudy, and Hoijtink
(2005) developed an automatic Bayes factor for testing inequality-constrained hypotheses on
means in ANOVA models. Mulder, Hoijtink, and Klugkist (2009) presented Bayes factors for
testing means in repeated measures situations. Mulder, Hoijtink, and de Leeuw (2012) developed
Bayes factors for testing (in)equality constraints on means and regression coefficients in multi-
variate normal linear regression models. Mulder and Fox (2013) considered Bayes factor tests of
multiple intraclass correlations. Mulder (2016) applied the Bayes factor to the problem of testing
order-constrained hypotheses on correlations. Recently, Böing-Messing and Mulder (2016) and
Böing-Messing et al. (2017) considered the Bayes factor for testing constrained hypotheses on
variances.

In this article, we will present three different automatic Bayes factors for testing (in)equality-
constrained hypotheses on variances as in Eq. (1): a balancedBayes factor, a generalized fractional
Bayes factor, and an adjusted fractionalBayes factor. Thefirst twomethods are novel developments
that have not yet been considered for the testing problem in Eq. (1). The adjusted fractional Bayes
factor was proposed by Böing-Messing et al. (2017). The main idea of the three methods is to
use a small share of the information in the sample data to automatically specify proper priors.
Subsequently, the remaining share is used for hypothesis testing. This methodology avoids the
need for the user to specify proper subjective priors based on prior information. As will be shown,
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the three Bayes factors use different methods for splitting the information for automatic prior
specification and hypothesis testing.

The Bayes factors will be evaluated based on six important criteria. First, it will be checked
whether the automatic prior used for the computation of the Bayes factors contains the information
of a minimal experiment. This is important to avoid problems such as Bartlett’s paradox (Bartlett,
1957). Second, it will be investigated whether the Bayes factors are scale invariant. This is crucial
because the hypothesis test should not depend on the scale of the data. Third, it will be checked
whether the Bayes factors function as an Occam’s razor when testing inequality-constrained
hypotheses. This is not always the case with automatic Bayes factors (e.g., Mulder, Hoijtink, &
Klugkist, 2010). Fourth, it will be examined whether the Bayes factors are information consistent.
Information consistency implies that in the case of overwhelming evidence toward a particular
hypothesis (based on the unrestricted estimates), the Bayes factor toward this hypothesis goes
to infinity (Liang, Paulo, Molina, Clyde, & Berger, 2008). Fifth, large sample consistency will
be investigated. In particular, through numerical simulation we will show how fast the evidence
toward the true hypothesis accumulates. Sixth, we examine the Bayes factors’ robustness to non-
normality of the data (since the Bayes factors use the normal distribution to model the data). The
contributions of this article are (i) the presentation of two new automatic Bayes factors for the
testing problem in Eq. (1), (ii) the evaluation of all Bayes factors based on the six criteria above,
and (iii) the application of the methodology to three different motivating examples that highlight
the importance of testing (in)equality-constrained hypotheses on variances in practice.

The remainder of this article is structured as follows. In the next section, we introduce the
three motivating examples. Following this, we give a brief introduction to the Bayes factor for
testing variances. We then give a detailed discussion of the six criteria for evaluating the Bayes
factors. Next, we develop the three automatic Bayes factors for testing (in)equality-constrained
hypotheses on variances. After that, we evaluate the Bayes factors by checking whether they
satisfy the six criteria. Subsequently, we illustrate the practical utility of the Bayes factors by
applying them to actual data from the three motivating examples. We conclude the article with a
discussion of our approach to testing variances.

2. Motivating Examples

In this section, we introduce three examples we use to highlight the practical relevance
of testing (in)equality-constrained hypotheses on variances of independent populations. We
selected examples where previous research or theoretical considerations clearly suggested certain
(in)equality-constrained hypotheses on the variances. At a later stage, we will apply the Bayes
factors to be developed in this article to actual data from the three example studies in order to
demonstrate the Bayes factors’ usefulness for analyzing real data in practice.

The first example we consider is a hypothetical study with four treatment groups fromWeera-
handi (1995). The author reports an increasing pattern of sample variances across the four groups.
In practice such an increasing pattern of sample variances could emerge, for example, if the
groups receive a new drug in an increasing dosage. Patients may respond quite differently to a
new drug, especially if the dosage is high. As a result, the variance is larger in groups receiving
higher dosages. Alternatively, an increasing pattern of variances might be observed for indepen-
dent groups that receive the same treatment for time periods of increasing length (e.g., Aunola
et al., 2004). Here, it is expected that subjects respond more heterogeneously when they received
the treatment for a longer time. Such expectations can be formulated as an inequality-constrained
hypothesis of the form H1 : σ 2

1 < · · · < σ 2
4 . To determine the evidence in the data in favor of H1

we need one or more competing hypotheses H1 can be tested against. Two competing hypotheses
that are often important in practice are the null hypothesis H0 : σ 2

1 = · · · = σ 2
4 stating equality of
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variances and the complement H2 : ¬ (H0 ∨H1), which comprises all possible hypotheses except
H0 and H1.

The second example we consider is a study by Silverstein, Como, Palumbo,West, andOsborn
(1995),who compared attentional performances of 17Tourette’s and 17ADHDpatientswith those
of a group of 17 controls. Participants were shown 120 strings of 12 letters. Each string contained
either a T or an F at a random position; the remaining 11 letters were random letters other than T
and F. Each string was presented for 55ms. After each presentation, participants had to indicate as
quickly as possible whether the string contained a T or an F. After completion of the 120 strings,
the accuracy of the respondents was computed as the percentage of correct answers. Now, psycho-
logical research has frequently foundADHDpatients to bemore heterogeneous in their attentional
performances than unaffected controls (see, e.g., Kofler et al., 2013; Russell et al., 2006). The
heterogeneity of attentional performances of Tourette’s patients as compared to unaffected con-
trols is less well documented. Given this information, we will test the following hypotheses on the
variances of the accuracies to investigate whether there is evidence that Tourette’s patients (group
2) are as heterogeneous in their attentional performances as either unaffected controls (group 1)
or ADHD patients (group 3): H1 : σ 2

1 = σ 2
2 < σ 2

3 and H2 : σ 2
1 < σ 2

2 = σ 2
3 . We will compare H1

and H2 to the competing hypotheses H0 : σ 2
1 = σ 2

2 = σ 2
3 and H3 : ¬ (H0 ∨ H1 ∨ H2).

Contrary to the studies above, our third example is a study involving a design with two
factors. Lucas (2003) investigated the influence of group leaders on subordinate group mem-
bers. The author was interested in whether a leader’s influence depends on the leader’s gen-
der and the way the leader was appointed. The author considered two types of appointment:
Either the leader was chosen at random or based on ability. Lucas conducted a 2 × 2 facto-
rial experiment with 30 participants in each condition. Influence of the group leader was mea-
sured as the number of times (in 10 trials) that a participant changed his/her opinion to match
the group leader’s opinion. Our interest is in the variability of the counts in the four groups.
Research on gender differences suggests that the variability is greater for male leaders than for
female leaders (e.g., Lehre et al., 2009). Due to a lack of theoretical underpinning, we assume
that there is no effect of appointment type. These expectations correspond to the hypothesis
H1 : σ 2

2 = σ 2
4 < σ 2

1 = σ 2
3 , where

{
σ 2
1 , σ 2

2 , σ 2
3 , σ 2

4

}
are the variances of the groups whose leader

is {(male, random), (female, random), (male, based on ability), (female, based on ability)}. We
will test H1 against the competing hypotheses H0 : σ 2

1 = · · · = σ 2
4 and H2 : ¬ (H0 ∨ H1).

This example illustrates that (in)equality-constrained hypotheses on variances can be formulated
not only within one factor, but also across multiple factors.

3. The Bayes Factor for Testing Variances

In this article, we assume that the data x j = [x1 j · · · xn j j
]T

come from a normal population
with mean μ j and variance σ 2

j :

xi j
i.i.d.∼ N

(
μ j , σ

2
j

)
, i = 1, . . . , n j , j = 1, . . . , J. (2)

Furthermore, we denote x = [xT1 · · · xTJ
]T
.

Before we give the expression for the marginal likelihood under an (in)equality-constrained
hypothesis Ht , the key ingredient of the Bayes factor, we need to introduce some additional
notation. Under a hypothesis Ht with qE

t equality constraints and q I
t inequality constraints on

J population variances, there are Kt = J − qE
t unique variances which we denote by σ 2

t =
[
σ 2
1 · · · σ 2

Kt

]T
(note that we omitted the hypothesis index t on the individual variances to simplify

the notation). Furthermore, let Jk be the number of populations sharing the unique variance σ 2
k and
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let μk j denote the mean of the j th population sharing the unique variance σ 2
k , for j = 1, . . . , Jk

and k = 1, . . . , Kt . Similarly, let xk j =
[
x1 jk · · · xnk j jk

]T
be the vector of nk j observations

from the j th population sharing the unique variance σ 2
k . If there are no equality constraints under

Ht , we omit the subscript j and write μk , xk , and nk instead of μk1 , xk1 , and nk1 to simplify the
notation. In a similar manner, under the null hypothesis where there is just 1 unique variance, we
omit the subscript k and write σ 2, μ j , x j , and n j instead of σ 2

1 , μ1 j , x1 j , and n1 j . Finally, we
denote the admissible parameter space of the unique variances under Ht by �t and the vector of
the unconstrained population means by μ.

We illustrate the above notation by means of the hypothesis H1 : σ 2
1 = σ 2

2 < σ 2
3 on the vari-

ances of J = 3 populations. Under H1 there is qE
1 = 1 equality constraint and q I

1 = 1 inequality

constraint, resulting in K1 = 3−1 = 2 unique variances denoted by σ 2
1 = [σ 2

1 σ 2
2

]T
. Population

1 and 2, which have equal variances under H1, share the unique variance σ 2
1 and population 3 has

the unique variance σ 2
2 . Consequently, the number of populations sharing the unique variances

σ 2
1 and σ 2

2 is given by J1 = 2 and J2 = 1, respectively. Furthermore, μ = [μ11 μ12 μ21

]T is the

vector of the means of populations 1, 2, and 3. Similarly, x = [xT11 xT12 xT21
]T

is the vector of the
data from populations 1, 2, and 3 with sample sizes of n11 , n12 , and n21 , respectively. Finally, the
admissible parameter space of the unique variances under H1 is given by �1 = {σ 2

1 : σ 2
1 < σ 2

2

}
.

The Bayes factor is defined as the ratio of the marginal likelihoods under two competing
hypotheses Ht and Ht ′ :

Btt ′ = mt (x)

mt ′(x)
, (3)

where mt (x) denotes the marginal likelihood under an (in)equality-constrained hypothesis Ht

formulated according to Eq. (1), which is given by

mt (x) =
∫

�t

∫

RJ
ft
(
x|μ, σ 2

t

)
πt

(
μ, σ 2

t

)
dμ dσ 2

t . (4)

The expression ft
(
x|μ, σ 2

t

)
is the likelihood under Ht , which is given by

ft
(
x|μ, σ 2

t

)
=

Kt∏

k=1

Jk∏

j=1

f
(
xk j |μk j , σ

2
k

)
1�t

(
σ 2
t

)
=

Kt∏

k=1

Jk∏

j=1

nk j∏

i=1

N
(
xi jk |μk j , σ

2
k

)
1�t

(
σ 2
t

)
,

(5)
where 1�t

(
σ 2
t

)
is the indicator function which is 1 if σ 2

t ∈ �t and 0 otherwise. The second
component of the marginal likelihood in Eq. (4) is πt

(
μ, σ 2

t

)
, the prior distribution of the model

parameters under Ht . The prior contains the information about the model parameters before
observing the data.

The marginal likelihood mt quantifies how well an (in)equality-constrained hypothesis Ht

with priorπt was able to predict the observed data (Jeffreys, 1961). Consequently, the Bayes factor
Btt ′ quantifies howmuch better Ht is able to predict the data as compared to Ht ′ . The Bayes factor
Btt ′ can thus be interpreted as a measure of relative evidence in the data in favor of Ht relative to
Ht ′ . Because of this intuitive interpretation, Bayes factors are becoming increasingly popular for
testing scientific theories in psychological research (see the special issue on this topic in Mulder
& Wagenmakers, 2016).

In addition, onemay compute the posterior probabilities of the hypotheses under investigation
using the marginal likelihoods and the prior probabilities of the hypotheses P(H1), . . . , P(HT ).
The prior probabilities quantify the likelihood of the hypotheses before observing any data. A
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widely accepted default choice is to set equal prior probabilities P(H1) = · · · = P(HT ) = 1/T
(e.g., Berger & Mortera, 1999; Hoijtink, 2011; Mulder, Hoijtink, & de Leeuw, 2012). After
observing the data, the posterior probabilities of the hypotheses are obtained by updating the
prior probabilities with the marginal likelihoods according to

P(Ht |x) = mt (x)P(Ht )
∑T

t ′=1 mt ′(x)P(Ht ′)
, (6)

for t = 1, . . . , T . The resulting posterior probabilities P(H1|x), . . . , P(HT |x) quantify the
plausibility of the hypotheses after observing the data.

4. Desirable Properties of the Bayes Factor When Testing (In)equality-Constrained Hypotheses
on Variances

For the testing problem of multiple (in)equality-constrained hypotheses on variances, we
deem the following properties to be of vital importance for the Bayes factor:

1. Minimal information prior: The choice of the prior is a key aspect when quantifying
the relative evidence between hypotheses using the Bayes factor. Generally, it is recom-
mended that the prior should be neither too informative nor too vague. When the prior is
too informative, it might dominate the data. On the other hand, when the prior is speci-
fied arbitrarily vague, the evidence toward an equality-constrained null hypothesis can
become arbitrarily large regardless of the observed data. This can be explained by the fact
that unrealistically large effects are anticipated under the unconstrained alternative due
to the extremely vague prior. This is also known as Bartlett’s paradox (Bartlett, 1957).
For this reason, a prior containing the information of a minimal experiment (discussed
later) is generally recommended.

2. Scale invariance: It is crucial that a Bayes factor is invariant to the scale of the data.
Thus, when the outcome variable is rescaled from, say, a 0–10 scale to a 0–100 scale,
the heterogeneity of the group measurements does not change in a relative manner, and
therefore, the relative evidence between hypotheses on variances, as quantified by the
Bayes factor, should also remain unchanged.

3. Occam’s razor when testing inequality-constrained hypotheses: Bayes factors naturally
balance between fit and complexity as an Occam’s razor when testing hypotheses with
equality constraints (Jefferys & Berger, 1992). When testing hypotheses with inequality
constraints, on the other hand, this is not always the case (e.g., Mulder, 2014a). To
evaluate this property when testing inequality-constrained hypotheses on variances, we
will consider a test of the order-constrained hypothesis H1 : σ 2

1 < σ 2
2 < σ 2

3 against the
larger (more complex) unconstrained hypothesis Hu : σ 2

1 , σ 2
2 , σ 2

3 . The Occam’s razor
property implies that in the case of overwhelming evidence for the order constraints,
hypothesis H1 should be preferred over the larger alternative hypothesis Hu .

4. Information consistency:ABayes factor for an unconstrained hypothesis against the null
hypothesis is called information consistent if it goes to infinity as the effect size goes
to infinity, while keeping the sample size fixed. The Bayes factor is called information
inconsistent if it converges to a constant in the limit. A well-known example of infor-
mation inconsistency is the Bayes factor based on Zellner’s g-prior (Berger & Pericchi,
2001; Zellner, 1986). Information (in)consistency when testing inequality-constrained
hypotheses was first considered by Mulder (2014a) for testing means. To our knowl-
edge, information (in)consistency has never been investigated when testing variances.
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Information consistency is an important property because it ensures that the conclusion
based on the Bayes factor corresponds with the conclusion by looking at the effects in
the data.

5. Large sample consistency: A Bayes factor is called large sample consistent when the
evidence for the true hypothesis against the competing hypotheses goes to infinity as
the sample size goes to infinity. Large sample consistency is a crucial statistical prop-
erty as it ensures that we will always select the true hypothesis as long as we collect
enough data. Note that the classical p value in a null hypothesis significance test is not
consistent because there is still a probability of incorrectly rejecting a true null equal to
the prespecified significance level, even when we have extremely large samples.

6. Robustness to non-normality: The Bayes factors we present in this article are based on
the assumption that the outcome of interest is normally distributed in the populations
under study. Empirical data, however, may deviate in certain aspects from normality
(e.g., outliers, skew). A Bayes factor should be robust to such violations of normality
in the data.

5. Automatic Bayes Factors

In Sect. 3, we saw that in order to quantify the relative evidence in the data between the
hypotheses of interest one needs to specify a proper prior for the free parameters under each
hypothesis. However, specifying priors for the population variances under all hypotheses to be
tested is a difficult and time-consuming task. First, one must elicit how plausible the values of the
unique variances under each hypothesis are before observing the data. In the case of mean effects,
researchers generally have an idea how plausible it is to observe a small, medium, or large effect in
the case that the null is false. In the case of variance parameters, this is muchmore difficult because
people generally have less intuition when considering variances than when considering means.
Even though it is extremely difficult, suppose that it is possible to elicit prior information about the
magnitude of each unique variance under the hypotheses. The next challenge is to translate this
information into a prior distribution. Prior distributions can have endlessly many possible shapes
(left/right skewed, little/much kurtosis, etc.). Therefore, it is practically impossible to derive a
prior distribution that exactly matches one’s prior beliefs about the magnitude of the variances.

Because of these difficulties, one might be tempted to use non-informative priors instead. The
standard non-informative prior for a variance parameter is the Jeffreys prior, which is σ−2. This
prior assumes that all possible values of the variance are equally likely on a log scale. Hence, this
prior does not integrate to one, and therefore, the prior is called improper. These improper priors
depend on undefined constants. Although improper priors can be used in Bayesian estimation (the
undefined constants cancel out in the posterior), improper priors cannot be used in Bayes factor
testing because the resulting Bayes factors will depend on these undefined constants (for details
see, e.g., O’Hagan, 1995). Another potential option could be to work with very vague proper
priors. This would avoid the issue of undefined constants of improper priors and still allows us
to compute the Bayes factor without needing subjective prior beliefs. This is also a bad idea,
however, as it will result in Bartlett’s paradox (Bartlett, 1957), as noted earlier. For this reason,
we focus on automatic Bayes factors which can be computed in an automatic fashion without
needing subjective information about the magnitude of the effects under each hypothesis. Three
different types of Bayes factors will be presented below, each in a separate subsection.

5.1. Balanced Bayes Factor

The balanced Bayes factor (BBF) was introduced by Böing-Messing and Mulder (2016) as
an automatic Bayes factor for testing (in)equality-constrained hypotheses on J = 2 variances. In
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this section, we generalize this approach to the case of testing hypotheses on J ≥ 2 variances
formulated according to Eq. (1). The main idea of the BBF is to use information from the sample
data to construct a proper prior in an automatic fashion such that it is balanced. We use the term
“balanced” following Jeffreys (1961), who referred to an unconstrained prior for an effect as
balanced if the prior probability of a positive effect is equal to the prior probability of a negative
effect. The automatic prior in the BBF is based on a similar idea, namely that every possible
ordering of the population variances is equally likely a priori (similar as in Mulder, Hoijtink,
and Klugkist (2010) for population means and regression coefficients). This balanced prior for
the population variances contains minimal information and has a scale hyperparameter that is
automatically determined by the sample data to avoid the need for subjective prior information.
To obtain this balanced prior, we proceed as follows. First, we fit a null model with a common
variance to a small part of the sample data. The latter is obtained by taking a small fraction of
the likelihood as suggested by O’Hagan (1995) in his fractional Bayes factor methodology. Next,
we obtain the marginal posterior of the common variance based on this small fraction of the
likelihood. We choose the fraction of the likelihood such that this marginal posterior contains
minimal information. (Details will be discussed below.) Finally, this posterior is used as prior
for each unique variance under the constrained hypotheses. Note that under this prior different
orderings of the variances are equally likely because every unique variance has the same prior.

The technical details of our approach to constructing the automatic balanced prior in the BBF
are as follows. First, we assume H0 : σ 2

1 = . . . = σ 2
J = σ 2. We then obtain a proper posterior by

updating the non-informative Jeffreys prior on μ and σ 2 with a fraction of the likelihood under
H0:

πB
0

(
μ, σ 2

∣∣xb
)

∝
⎛

⎝
J∏

j=1

f
(
x j |μ j , σ

2
)b j

⎞

⎠πN
0

(
μ, σ 2

)
, (7)

where πN
0

(
μ, σ 2

) ∝ σ−2 is the Jeffreys prior under H0, and we use the superscript B to refer

to the BBF. The expression f
(
x j |μ j , σ

2
)b j denotes a fraction of the likelihood of the data from

population j under H0 (inspired by the fractional Bayes factor of O’Hagan, 1995). It is obtained by
raising the likelihood of population j to the power of b j ∈ [0, 1]. The exponent b j is a population-
specific fraction that controls how much information (in terms of the number of observations) is
contained in the fraction of the likelihood of population j (Berger & Pericchi, 2001; De Santis &
Spezzaferri, 2001). We use the notation xb, where b = [b1 · · · bJ

]T , to indicate that the posterior
in Eq. (7) contains a fraction of the information in the complete sample data. The larger the b’s,
the more information from the likelihood (i.e., from the sample data) is contained in the posterior.

In the next step, we integrate μ out of the joint posterior to obtain the marginal posterior of
σ 2:

πB
0

(
σ 2
∣∣xb
)

=
∫

RJ
πB
0

(
μ, σ 2

∣∣xb
)
dμ = Inv-χ2

(
σ 2|ν, τ 2

)
, (8)

where

ν =
⎛

⎝
J∑

j=1

b jn j

⎞

⎠− J and τ 2 =
∑J

j=1 b j (n j − 1)s2j(∑J
j=1 b jn j

)
− J

. (9)

Here Inv-χ2
(
ν, τ 2

)
is the scaled inverse-χ2 distribution with degrees of freedom parameter ν > 0

and scale parameter τ 2 > 0 (Gelman, Carlin, Stern, & Rubin, 2004), and s2j = 1
n j−1

∑n j
i=1(xi j −

x̄ j )2 is the sample variance of x j .
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We then define the prior on the unique variances σ 2
t = [σ 2

1 · · · σ 2
Kt

]T
under an (in)equality-

constrained hypothesis Ht as

πB
t

(
σ 2
t

∣∣xb
)

= 1

PB
(
σ 2
t ∈ �t |xb

)
Kt∏

k=1

πB
0

(
σ 2
k

∣∣xb
)
1�t

(
σ 2
t

)
, (10)

where
PB
(
σ 2
t ∈ �t

∣∣xb
)

=
∫

�t

Kt∏

k=1

πB
0

(
σ 2
k

∣∣xb
)
dσ 2

t (11)

is the prior probability that the inequality constraints on the unique variances hold. In Eq. (10), its
inverse acts as a normalizing constant. The prior in Eq. (10) is referred to as balanced because it
implies that every possible ordering of the variances is equally likely a priori. For example, under
H1 : σ 2

1 < σ 2
2 < σ 2

3 the prior probability PB in Eq. (11) equals 1/6 because all 3! = 6 orderings
of the 3 variances are equally likely a priori.

The prior in Eq. (10) must not be too vague or else Bartlett’s paradox is induced (e.g., Bartlett,
1957; Jeffreys, 1961; Liang et al., 2008; Lindley, 1957). On the other hand, the prior should not be
too informative either because then it would dominate the data. A widely accepted principle that
provides a solution to this problem is to let the prior contain minimal information (e.g., Berger &
Pericchi, 1996; O’Hagan, 1995; Spiegelhalter & Smith, 1982).We canmake the scaled inverse-χ2

prior in Eq. (8) contain minimal information by setting the degrees of freedom to 1. This can be
achieved by setting the fractions to b j = (1 + 1/J )/n j , for j = 1, . . . , J . This gives us degrees

of freedom of ν =
(∑J

j=1 b jn j

)
− J =

(∑J
j=1(1 + 1/J )

)
− J = 1 regardless of the sample

sizes n1, . . . , nJ . Note that the scale parameter τ 2 in Eq. (9) can be interpreted as a weighted
average of sums of squares across all populations.

The unconstrained mean vector μ is common under all hypotheses, which is why we use
the non-informative Jeffreys prior πN (μ) = C for it (Jeffreys, 1961), where C is an unspecified
normalizing constant (see, e.g., O’Hagan, 1995). The joint balanced prior on the means and the
variances under Ht is then given by

πB
t

(
μ, σ 2

t

∣∣xb
)

= πB
t

(
σ 2
t

∣∣xb
)

πN (μ). (12)

Eventually, we define the marginal likelihood under a constrained hypothesis Ht based on
the balanced prior as

mB
t (x, b) =

∫

�t

∫

RJ
ft
(
x|μ, σ 2

t

)
πB
t

(
μ, σ 2

t

∣∣xb
)
dμ dσ 2

t . (13)

After some algebra (see “Appendix A”), the marginal likelihood under a constrained hypothesis
as in Eq. (1) can be written in an analytic form:

mB
t (x, b) = C

PB
(
σ 2
t ∈ �t |x

)

PB
(
σ 2
t ∈ �t |xb

)
(
ντ 2
) νKt

2
�
(ν

2

)−Kt
π−

∑Kt
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((
∑Jk

j=1 nk j

)
−Jk

)

2

⎛

⎝
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Jk∏
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− 1

2
k j

⎞

⎠

Kt∏

k=1

�

⎛

⎝
ν +

(∑Jk
j=1 nk j

)
− Jk

2

⎞

⎠

⎛

⎝ντ 2 +
Jk∑

j=1

(
nk j − 1

)
s2k j

⎞

⎠

−
ν+
(
∑Jk

j=1 nk j

)
−Jk

2

,

(14)
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where C is the unspecified normalizing constant from the Jeffreys prior on the means, �(·) is the
gamma function, and s2k j is the sample variance of the data from the j th population sharing the

unique variance σ 2
k . Furthermore,

PB
(
σ 2
t ∈ �t |x

)
=
∫

�t

Kt∏

k=1

Inv-χ2

⎛

⎝σ 2
k

∣
∣∣
∣ ν +

⎛

⎝
Jk∑

j=1

nk j

⎞

⎠− Jk ,
ντ2 +∑Jk

j=1

(
nk j − 1

)
s2k j

ν +
(∑Jk

j=1 nk j

)
− Jk

⎞

⎠ dσ 2
t

(15)
is the posterior probability that the inequality constraints on the unique variances hold. Note
that the unspecified constant C cancels out in the computation of Bayes factors. The integral in
Eq. (15) cannot be computed analytically, but it can be approximated numerically using Monte
Carlo methods (see “Appendix C”).

5.2. Generalized Fractional Bayes Factor

In the construction of the BBF, a possible objection one could have is that there is a slight issue
of using the data twice: first for constructing the balanced prior and second for hypothesis testing.
Note, however, that this violation is extremely small, as the balanced prior contains minimal
information. Another potential issue with the BBF is that the balanced prior shrinks the posterior
to the boundary of the parameter space where the variances are equal, which results in a loss
of evidence in favor of a true inequality-constrained hypothesis. An alternative approach which
avoids these issues is the fractional Bayes factor (FBF) of O’Hagan (1995). In this section, we
apply the FBF for the first time to the testing problem formulated in Eq. (1). The FBF is constructed
as the ratio of the marginal likelihoods of the complete information in the data and a fraction of
the information in the data, both using improper priors:

mF
t (x, b) =

∫
�t

∫
RJ ft

(
x|μ, σ 2

t

)
πN
t

(
μ, σ 2

t

)
dμ dσ 2

t
∫
�t

∫
RJ ft

(
x|μ, σ 2

t
)b

πN
t
(
μ, σ 2

t
)
dμ dσ 2

t

. (16)

Here πN
t

(
μ, σ 2

t

)
is the non-informative Jeffreys prior on the population means and variances

given by

πN
t

(
μ, σ 2

t

)
= Ct

Kt∏

k=1

σ−2
k 1�t

(
σ 2
t

)
, (17)

where Ct is an unspecified normalizing constant. The expression ft
(
x|μ, σ 2

t

)b
is the likelihood

under Ht to the power of b, a key part of the FBF methodology. The fraction b is a proportion that
determines how much of the information in the likelihood (in terms of observations) is contained
in ft

(
x|μ, σ 2

t

)b
. Note that b is the same under all hypotheses. This is because b effectively divides

the likelihood into a training fraction and a test fraction (see, e.g., Gilks, 1995), and the size of
these two fractions should be constant across hypotheses.

Choosing the fraction b is a crucial step in the application of the FBF. A popular and widely
accepted approach is setting b = m0/n, where m0 is the size of a minimal training sample and
n is the sample size (e.g., Berger & Mortera, 1999; O’Hagan, 1995). This way the information
in the data that is used for hypothesis testing is maximal. Despite the useful properties of the
FBF (O’Hagan, 1997), De Santis and Spezzaferri (2001) highlighted that the FBF may result
in inconsistent behavior in the case of unbalanced data with groups of very different size. This
is caused by the fact that the same fraction is used for all groups. In the case of testing mean
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parameters, the authors therefore proposed a generalization of the FBF where different fractions
are used for different parts of the likelihood. Here, we adopt a similar idea for testing variances
using population-specific fractions bk j = m0/nk j = 2/nk j , where m0 = 2. Note that we need
two observations from each population for the automatic prior under the unconstrained hypothesis
to be proper. The fraction of the likelihood is then given by

ft
(
x|μ, σ 2

t

)b =
Kt∏

k=1

Jk∏

j=1

f
(
xk j |μk j , σ

2
k

)bk j 1�t

(
σ 2
t

)
, (18)

where we slightly abuse notation by using the vector of population-specific fractions b as a
superscript. Plugging the expression above intoEq. (16), themarginal likelihood of the generalized
fractional Bayes factor (GFBF) can be written as (see “Appendix B”)

mGF
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(19)
where

PGF
(
σ 2
t ∈ �t

∣∣xb
)

=
∫

�t

Kt∏

k=1

Inv-χ2

⎛

⎝σ 2
k

∣
∣∣∣

⎛

⎝
Jk∑

j=1

bk j nk j

⎞

⎠− Jk,

∑Jk
j=1 bk j

(
nk j − 1

)
s2k j(∑Jk

j=1 bk j nk j

)
− Jk

⎞

⎠ dσ 2
t

(20)
is the prior probability that the inequality constraints on the unique variances hold. The expression
for the posterior probability that the inequality constraints hold is identical to Eq. (20) with all
b’s equal to 1, that is,
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As for the BBF, the integrals in Eqs. (20) and (21) can be approximated using Monte Carlo
methods (see “Appendix C”).

5.3. Adjusted Fractional Bayes Factor

A property of the (generalized) FBF that has been criticized is that it may not function as
an Occam’s razor when testing hypotheses with inequality constraints on the parameters (e.g.,
Mulder, 2014b). This can be explained by the fact that the implicit automatic prior is concen-
trated around the likelihood. If an inequality-constrained hypothesis is strongly supported by the
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data, which implies that the likelihood and fraction of the likelihood are completely concen-
trated in the inequality-constrained subspace, the posterior probability and the automatic prior
probability in Eq. (19) are approximately equal to 1. Consequently, the marginal likelihood of
an inequality-constrained hypothesis that is supported by the data is approximately equal to the
marginal likelihood of an unconstrained hypothesis. Thus, the Bayes factor is indecisive even
though the data strongly support the more parsimonious inequality-constrained hypothesis. This
will be shown in a numerical simulation in the next section.

To circumvent this issue, Böing-Messing et al. (2017) proposed an adjustment of the GFBF.
In this adjusted fractional Bayes factor (AFBF) approach themarginal likelihood under hypothesis
Ht is defined as

mAF
t (x, b) =

∫
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∫
RJ fu
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t

)
πN
u

(
μ, σ 2

t

)
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t

, (22)

where we use the same population-specific fractions b as in the GFBF, that is, we set bk j = 2/nk j .
Apart from the fractions b, the formulation above features two differences from the marginal
likelihood in the FBF approach in Eq. (16). First, in the denominator the integration region is an
adjusted parameter space �a

t given by

�a
t =

{
σ 2
t : R I

t

[
a1σ 2

1 · · · aKtσ
2
Kt

]T
> 0
}

, (23)

where a1, . . . , aKt are tuning parameters given by

ak =
(∑Jk

j=1 bk j nk j

)
− Jk
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(
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)
s2k j

, (24)

for k = 1, . . . , Kt .
The second difference in Eq. (22) is that the unconstrained likelihood and Jeffreys prior are

used instead of the inequality-constrained likelihood and Jeffreys prior under Ht . The uncon-
strained Jeffreys prior is given by πN

u

(
μ, σ 2

t

) = Ct,u
∏Kt

k=1 σ−2
k . Using the unconstrained like-

lihood and Jeffreys prior is necessary to ensure that we integrate over the complete adjusted
parameter space �a

t in the denominator in Eq. (22). Because the unconstrained Jeffreys prior is
used in the denominator, it should also be used in the numerator to ensure that the unspecified nor-
malizing constant cancels out. Despite this adjustment, it is important to note that the numerator
in the AFBF is still equal to the marginal likelihood under Ht based a non-informative improper
prior, similar as in the original FBF.

The final expression for the marginal likelihood in the AFBF approach is identical to that of
the GFBF given in Eq. (19), except that the prior probability that the inequality constraints hold
is given by
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where the two integrals are equal due to the mathematical result that if σ 2 ∼ Inv-χ2
(
ν, τ 2

)
, then

aσ 2 ∼ Inv-χ2
(
ν, aτ 2

)
. As with the BBF and GFBF, the integrals above can be approximated

using Monte Carlo methods (see “Appendix C”).

6. Evaluation of the Bayes Factors

In this section, we evaluate the three automatic Bayes factors based on the six desirable
properties discussed in Sect. 4. We provide theoretical arguments showing that the priors contain
minimal information and that the Bayes factors are scale invariant and large sample consistent. In
addition to the theoretical evaluation of large sample consistency, we present a simulation study
investigating how fast the evidence in favor of the true hypothesis increases as the sample size
increases. Information consistency and robustness to non-normality will be examined by means
of simulation studies as well. We use a combination of simulations and theoretical arguments to
check the Occam’s razor property of the Bayes factors.

6.1. Minimal Information Prior

In the construction of the BBF, it was explicitly taken into account that the balanced prior
contains minimal information. Although there is no explicit prior in the GFBF and the AFBF,
Gilks (1995) showed that the information in the fraction of the likelihood can be viewed as the
information in an implicit underlying prior. Because minimal fractions in the GFBF and the AFBF
were considered, we can therefore argue that this property is satisfied by these automatic Bayes
factors.

6.2. Scale Invariance

To show that the BBF is scale invariant, we can proceed as follows. Let wxk j be the rescaled
data of the j th group sharing the unique variance σ 2

k , where w is a constant. Then, the sample
variance ofwxk j is given byw2s2k j . If we substitute s

2
k j
in Eq. (14) withw2s2k j , it can be shown that

the marginal likelihood based on the rescaled data is equal to a hypothesis-independent constant
times the marginal likelihood based on the original data. The hypothesis-independent constant
cancels out in the computation of Bayes factors and posterior probabilities of the hypotheses.
Thus, the Bayes factors and posterior probabilities based on the rescaled data are equal to those
based on the original data, which shows that the BBF is scale invariant. In a similar manner, it
can be shown that the GFBF and the AFBF are scale invariant.

6.3. Occam’s Razor When Testing Inequality-Constrained Hypotheses

To illustrate the testing behavior of the three automatic Bayes factors for inequality-
constrained hypotheses in particular, we test the order-constrained hypothesis H1 : σ 2

1 < σ 2
2 < σ 2

3
against the unconstrained hypothesis Hu : σ 2

1 , σ 2
2 , σ 2

3 . The top row of Fig. 1 shows the BBF (red
line), the GFBF (green line), and the AFBF (blue line) of H1 against Hu for common sample
sizes of n1 = n2 = n3 = n = 5 (left plot) and n = 20 (right plot) and sample variances of[
s21 s22 s23

]T = [1 s s2
]T
. We let s2 go from exp(0) = 1 to exp(10) = 22,026.47. Thus, the larger

s2, the larger the size of the order effect. Note that setting s22 = s results in equal sample variance
ratios of s22/s

2
1 = s23/s

2
2 = s. For the BBF, we set bk = (1 + 1/3)/n, whereas for the GFBF and

the AFBF we set bk = 2/n.
Now, according to theOccam’s razor principle H1 should be favored over Hu if the constraints

under H1 are supported by the data since H1 is more parsimonious than Hu (in the sense that
the admissible parameter space under H1 is a subset of the unconstrained space under Hu). It
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Figure 1.
The BBF (red line), GFBF (green line), and AFBF (blue line) testing H1 : σ 2

1 < σ 2
2 < σ 2

3 against Hu : σ 2
1 , σ 2

2 , σ 2
3 (top

row), H2 : ¬H1 (middle row), and H0 : σ 2
1 = σ 2

2 = σ 2
3 (bottom row). The Bayes factors are plotted for common sample

sizes of n1 = n2 = n3 = n = 5 (left column) and n = 20 (right column) and sample variances of
[
s21 s22 s23

]T =
[
1 s s2

]T , where s2 ∈ [exp(0), exp(10)]. For the BBF, we set bk = (1 + 1/3)/n, whereas for the GFBF and the AFBF
we set bk = 2/n (Color figure online).
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can be seen, however, that the GFBF approaches 1 as s2 grows very large. This means that the
GFBF is undecided about H1 and Hu despite the fact that the data strongly support H1, which
suggests that the GFBF does not function as an Occam’s razor in this case. This can be explained
as follows. From the expression for the marginal likelihood in Eq. (19), it follows that the GFBF
of H1 against Hu can be written as

BGF
1u = PGF

(
σ 2
1 < σ 2

2 < σ 2
3 |x)

PGF
(
σ 2
1 < σ 2

2 < σ 2
3 |xb) → 1

1
= 1, (26)

where PGF
(
σ 2
1 < σ 2

2 < σ 2
3 |x) and PGF

(
σ 2
1 < σ 2

2 < σ 2
3 |xb) are the posterior and the prior prob-

ability that the inequality constraints under H1 hold, respectively. Now, for very large effects both
probabilities converge to 1, which results in a Bayes factor that converges to 1.

The BBF and the AFBF do not converge to 1 but to a value strictly larger than 1 as s2 goes
to infinity. The explanation for the BBF and the AFBF converging to constants greater than 1 is
similar. First, similar to the GFBF, it holds that

BB
1u = PB

(
σ 2
1 < σ 2

2 < σ 2
3 |x)

PB
(
σ 2
1 < σ 2

2 < σ 2
3 |xb) → PB∗

1/6
= 6 × PB∗

(27)

and

BAF
1u = PAF

(
σ 2
1 < σ 2

2 < σ 2
3 |x)

PAF
(
a1σ 2

1 < a2σ 2
2 < a3σ 2

3 |xb) → 1

1/6
= 6. (28)

For the BBF, the posterior probability converges to PB∗ ≈ 0.45 for n = 5 and PB∗ ≈ 0.50 for
n = 20 as the effect size increases. (It does not converge to 1 due to prior shrinkage.) The prior
probability always equals 1/6 since in the BBF approach the prior is the product of three identical
distributions, such that each of the 6 possible orderings of the 3 variances is equally likely a priori.
Consequently, the BBF converges to 6 × PB∗ ≈ 2.69 for n = 5 and 6 × PB∗ ≈ 3.00 for n = 20
as the effect size increases. In the AFBF approach, the posterior probability goes to 1 as the effect
size increases, and the tuning parameters a1, a2, a3 adapt to the sample sizes and sample variances
such that the prior probability always equals 1/6. As a result, the AFBF converges to 6. Thus,
contrary to the GFBF, the BBF and the AFBF function as an Occam’s razor by favoring the more
parsimonious inequality-constrained hypothesis H1 over the unconstrained hypothesis Hu if the
former is strongly supported by the data.

It is important to note that the automatic prior probability that the inequality constraints hold
under the AFBF is not always equal to the reciprocal of the number of possible orderings as
above. For example, under the inequality-constrained hypothesis H : σ 2

1 = σ 2
2 < σ 2

3 the prior
probability that the inequality constraint holds is computed using scaled inverse-χ2 distributions
with identical scale parameters but different degrees of freedom (due to the equality constraint;
cf. Eq. (25)). Thus, since the distributions are not identical, the automatic prior probability that
the inequality constraint holds is not equal to the reciprocal of the number of possible orderings.

6.4. Information Consistency

We evaluate information consistency for two different tests on variances: (i) testing
an inequality-constrained hypothesis against its complement and (ii) testing an inequality-
constrained hypothesis against the null hypothesis. We will call the Bayes factor B12 (B10) of an
inequality-constrained hypothesis H1 : R I

1σ
2 > 0 against H2 : ¬H1 (H0 : σ 2

1 = · · · = σ 2
J ) infor-

mation consistent if B12 → ∞ (B10 → ∞) as each element in ξ̂ = R I
1

[
log
(
σ̂ 2
1

) · · · log (σ̂ 2
J

)]T
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goes to infinity, while keeping the sample size fixed. If the Bayes factor converges to a constant
B∗
12 < ∞ (B∗

10 < ∞) instead, then it is referred to as information inconsistent.
First, we investigate information consistency when testing an inequality-constrained hypoth-

esis against its complement. The middle row of Fig. 1 shows the logarithm of the BBF, the GFBF,

and the AFBF of H1 : σ 2
1 < σ 2

2 < σ 2
3 against H2 : ¬H1 as ξ̂ = [

log
(
s22/s

2
1

)
log
(
s23/s

2
2

)]T

increases from
[
0 0
]T to

[
5 5
]T . The results indicate that the GFBF and the AFBF are informa-

tion consistent, whereas the BBF is information inconsistent. As the effect size increases, the BBF
converges to a constant BB∗

12 ≈ exp(1.399) = 4.05 for n = 5 and BB∗
12 ≈ exp(1.607) = 4.99

for n = 20. This behavior of the BBF can be explained by the fact that the posterior proba-
bility that the inequality constraints under H1 hold converges to PB∗ ≈ 0.45 for n = 5 and
PB∗ ≈ 0.50 for n = 20 (as was found in Sect. 6.3), which implies that the probability that the
inequality constraints under H1 do not hold (as is stated in H2) converges to 1 − PB∗ ≈ 0.55
for n = 5 and 1 − PB∗ ≈ 0.50 for n = 20. The BBF of H1 against H2 thus converges to

BB∗
12 = BB∗

1u

/
BB∗
2u ≈ PB∗

1/6

/
1−PB∗
5/6 , which equals 4.05 for n = 5 and 4.99 for n = 20. Note

that H1 is more parsimonious than H2 because H1 covers 1/6 of the unconstrained parameter
space while H2 covers 5/6 of the unconstrained space. The results show that the AFBF indicates
stronger evidence in favor of the more parsimonious hypothesis H1 than the GFBF. This again
illustrates that the AFBF functions as an Occam’s razor, whereas the GFBF does not.

Next, we investigate information consistency when testing the order-constrained hypothesis
H1 : σ 2

1 < σ 2
2 < σ 2

3 against the null hypothesis H0 : σ 2
1 = σ 2

2 = σ 2
3 . The bottom row of Fig. 1

shows the logarithm of the Bayes factor B10 as a function of the effect size s2. The results indicate
that the GFBF and the AFBF are information consistent since for these two Bayes factors the
evidence in favor of H1 goes to infinity as the size of the order effect increases. Again, the AFBF
indicates stronger evidence in favor of H1 than the GFBF. The BBF, on the other hand, does not
show information consistent behavior in this case either. The inconsistent behavior of the BBF
illustrates that it may not provide a good quantification of the relative evidence in the data between
(in)equality-constrained hypotheses in the case of small samples and large effects.

6.5. Large Sample Consistency

Using the same argument as O’Hagan (1995), it can be shown that the BBF, GFBF,
and AFBF are large sample consistent when testing equality-constrained hypotheses. When
testing inequality-constrained hypotheses, the automatic Bayes factors are also consistent.
This can be seen from the expressions of the marginal likelihoods, which, in the case of
inequality constraints, depend on the ratio of the posterior probability that the inequality con-
straints hold and the automatic prior probability that the inequality constraints hold (e.g.,
PGF

(
σ 2
t ∈ �t |x

)
/PGF

(
σ 2
t ∈ �t |xb

)
in the GFBF). Under the true hypothesis, the posterior

probability that the inequality constraints hold goes to 1 as the sample size goes to infinity,
whereas under the incorrect hypotheses it goes to 0. Similarly, the prior probability that the
inequality constraints hold converges to a constant unequal to 0. As a result, the Bayes factor, that
is, the ratio of the marginal likelihoods, goes to infinity toward the true hypothesis. Consequently,
the posterior probability of the true hypothesis goes to 1 while the posterior probabilities of the
incorrect hypotheses go to 0. This implies consistency.

In addition to this theoretical result, we also performed a simulation study to investigate how
fast the evidence for the true hypothesis accumulates as the sample size grows. This will provide
some insight into how much data are needed to obtain strong evidence for a true constrained
hypothesis on variances in different scenarios.

6.5.1. Simulation Setup In this simulation, we tested hypotheses on the variances of J ∈ {4, 6}
populations. The results for 6 populations are similar to those for 4 populations, which is why we
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Table 1.
Overview of the population variances used in the simulation study with 4 populations.

Population Effect σ 2
1 σ 2

2 σ 2
3 σ 2

4

Null No 1.00 1.00 1.00 1.00
Order Small 1.00 1.14 1.30 1.49

Medium 1.00 1.36 1.84 2.50
Large 1.00 1.58 2.48 3.91

Mixed Small 1.00 1.00 1.33 1.33
Medium 1.00 1.00 2.00 2.00
Large 1.00 1.00 2.94 2.94

Near order Small 1.14 1.00 1.30 1.49
Medium 1.36 1.00 1.84 2.50
Large 1.58 1.00 2.48 3.91

Reverse order Small 1.49 1.30 1.14 1.00
Medium 2.50 1.84 1.36 1.00
Large 3.91 2.48 1.58 1.00

present the former in “Appendix D.” For the simulation with 4 populations, we used a simulation
design with three factors:

1. Pattern of the population variances: We considered five different variance patterns,
referred to as null pattern, order pattern, mixed pattern, near-order pattern, and reverse-
order pattern. In the null pattern, all population variances were equal, σ 2

1 = · · · = σ 2
4 .

In the order pattern, the variances followed an increasing order, σ 2
1 < · · · < σ 2

4 . In the
mixed pattern, the structure of the variances was σ 2

1 = σ 2
2 < σ 2

3 = σ 2
4 . Note that such a

pattern could emerge in a 2×2 factorial study where there is an effect of only one of the
two factors (similar to our third motivating example in Sect. 2). The near-order pattern
was similar to the order pattern with the difference that the variances of populations 1
and 2 were interchanged: σ 2

2 < σ 2
1 < σ 2

3 < σ 2
4 . Finally, in the reverse-order pattern the

variances were ordered as σ 2
4 < · · · < σ 2

1 .
2. Effect size: In all patterns but the null pattern we considered three effect sizes for the

population variances: small,medium, and large. The effect size is given by the ratio of the
largest to the smallest population variance (e.g., Ruscio & Roche, 2012). To determine
the actual values of the population variances, we followed the approach of Böing-
Messing et al. (2017). The authors set the smallest variance equal to 1 and determine the
largest variance under different effect sizes based on established guidelines for testing
equality of means. The intermediate variances are then determined such that the ratio
of adjacent variances is constant. The resulting values of the population variances are
given in Table 1. Note that in the null pattern we set all variances equal to 1.

3. Sample size: We drew samples of common size n1 = · · · = n4 = n ∈
{5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000} from the four populations.

Hence, there were 11 conditions for the null pattern and 4 (patterns) × 3 (effect sizes) ×
11 (sample sizes) = 132 conditions for the remaining four patterns, resulting in a total of 143

conditions. In each condition, we drew 1000 samples x(m) =
[
x(m)
1 · · · x(m)

J

]
, m = 1, . . . , 1000.

Here x(m)
j =

[
x (m)
1 j · · · x (m)

nj

]T
, where x (m)

i j is distributed as in Eq. (2).We specified the population

variances according to Table 1 and set all population means equal to 0 (note that the three Bayes
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factors do not depend on the sample means, cf. Eqs. (14), (19), and (25)). In each of the 1000
samples per condition, we tested four hypotheses using the three different Bayes factors:

H0 : σ 2
1 = · · · = σ 2

4 ,

H1 : σ 2
1 < · · · < σ 2

4 ,

H2 : σ 2
1 = σ 2

2 < σ 2
3 = σ 2

4 ,

H3 : ¬ (H0 ∨ H1 ∨ H2).

(29)

Here, H3 is the complement which comprises all possible hypotheses except H0, H1, and H2. Note
that the marginal likelihood under H3 is equal to the marginal likelihood under the hypothesis
H4 : ¬H1 because the probability of the event that two or more variances are exactly equal
is 0. Furthermore, note that for the near-order and reverse-order patterns the true hypothesis
is contained in the complement H3 (cf. Table 1). In each sample, we then used the marginal
likelihoods under all four hypotheses to compute the posterior probability of the true hypothesis
Ht as P

(
Ht |x(m)

) = mt
(
x(m)

) /∑3
t ′=0 mt ′

(
x(m)

)
, where we assumed equal prior probabilities

of the hypotheses. Eventually,we computed the expected posterior probability of Ht as P̄(Ht |x) =
1

1000

∑1000
m=1 P

(
Ht |x(m)

)
.

6.5.2. Results Figure 2 shows the simulation results for the five variance patterns. The plots
show the expected posterior probability of the true hypothesis Ht , t = 0, 1, 2, 3, as a function
of the common sample size n for the BBF (red lines), the GFBF (green lines), and the AFBF
(blue lines). Figure 2b–e shows the results for a small effect (dotted lines), medium effect (dashed
lines), and large effect (solid lines). Note that in Fig. 2a and e the lines for the GFBF and AFBF
largely overlap. It can be seen that under all variance patterns and effect sizes the lines approach
1 as the sample size increases, which is a result of the large sample consistency of the three
automatic Bayes factors. Naturally, the expected posterior probability of the true hypothesis goes
to 1 fastest under a large effect because small effects are more difficult to detect for a given
sample size. Moreover, the plots show that the BBF converges fastest to a true hypothesis if
two or more population variances are equal (see the null and the mixed pattern in Fig. 2a and c,
respectively), whereas the GFBF and the AFBF converge fastest to the true hypotheses if none
of the population variances are equal (see the order patterns in Fig. 2b, d, and e). Furthermore, it
can be seen that the GFBF and the AFBF behave similarly. The GFBF converges slightly faster
to a true null hypothesis (see Fig. 2a), whereas the AFBF converges somewhat faster to a true
inequality-constrained hypothesis (see Fig. 2b and c).

Under the null pattern (Fig. 2a), sample sizes of 10 (BBF) and 50 (GFBF, AFBF) result
in posterior probabilities of the true null hypothesis H0 of at least 0.8. Under the order pattern
(Fig. 2b), we need considerably larger samples to obtain posterior probabilities of the true order-
constrained hypothesis H1 of at least 0.8. While under a large effect sample sizes of 200 are
sufficient for reaching a value of at least 0.8, under a small effect we need sample sizes of 5000
(BBF) and 2000 (GFBF, AFBF), respectively. Under the mixed pattern (Fig. 2c), sample sizes of
50 result in a posterior probability of the true mixed hypothesis H2 of at least 0.8 if the effect
is large, whereas under a small effect sample sizes of 500 are required. In Fig. 2d, it can be
seen that rather large samples are necessary to detect that the order of the first two population
variances is reversed. While under a large effect sample sizes of 200 (GFBF) and 500 (BBF,
AFBF), respectively, result in a posterior probability of the true complement H3 of at least 0.8,
under a small effect this value is only reached for sample sizes of 5000. Figure 2e shows that it
is easier for the three Bayes factors to detect that the order of the four population variances is
reversed. If the effect is large, posterior probabilities of the true complement H3 of at least 0.8



PSYCHOMETRIKA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

n

P
(H

0|x
)

BBF
GFBF
AFBF 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

n

P
(H

1|x
)

BBF, large
GFBF, large
AFBF, large
BBF, medium
GFBF, medium
AFBF, medium
BBF, small
GFBF, small
AFBF, small

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

n

P
(H

2| x
)

BBF, large
GFBF, large
AFBF, large
BBF, medium
GFBF, medium
AFBF, medium
BBF, small
GFBF, small
AFBF, small 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

n

P
(H

3|x
)

BBF, large
GFBF, large
AFBF, large
BBF, medium
GFBF, medium
AFBF, medium
BBF, small
GFBF, small
AFBF, small

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

n

P
(H

3|x
)

BBF, large
GFBF, large
AFBF, large
BBF, medium
GFBF, medium
AFBF, medium
BBF, small
GFBF, small
AFBF, small

(a) Null (b) Order

(c) Mixed (d) Near order

(e) Reverse order

Figure 2.
Results of a simulation study comparing the performance of the three automatic Bayes factors in testing variances of 4
populations. We examined five different patterns of the population variances: a σ 2

1 = · · · = σ 2
4 , b σ 2

1 < · · · < σ 2
4 , c

σ 2
1 = σ 2

2 < σ 2
3 = σ 2

4 , d σ 2
2 < σ 2

1 < σ 2
3 < σ 2

4 , and e σ 2
4 < · · · < σ 2

1 . In patterns b to e we considered three different
sizes of the order effect: small, medium, and large. For each combination of pattern and effect size, we drew 1000 samples
of size n1 = · · · = n4 = n. In each sample we then tested four hypotheses: H0 : σ 2

1 = · · · = σ 2
4 , H1 : σ 2

1 < · · · < σ 2
4 ,

H2 : σ 2
1 = σ 2

2 < σ 2
3 = σ 2

4 , and H3 : ¬ (H0 ∨ H1 ∨ H2). Eventually, we computed the expected posterior probability of
the true hypothesis P̄(Ht |x) across the 1000 samples. The plots show P̄(Ht |x) as a function of the common sample size
n for the BBF (red lines), GFBF (green lines), and AFBF (blue lines) under a small effect (dotted lines), medium effect
(dashed lines), and large effect (solid lines) (Color figure online).
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Table 2.
Sample sizes and sample variances for three examples.

Example Group n s2

Example 1 1: Treatment 1 7 0.30
2: Treatment 2 5 0.79
3: Treatment 3 8 2.89
4: Treatment 4 6 3.61

Example 2 1: Controls 17 15.52
2: Tourette’s patients 17 20.07
3: ADHD patients 17 38.81

Example 3 1: Male leader, appointed at random 30 3.46
2: Female leader, appointed at random 30 1.32
3: Male leader, appointed on ability 30 3.20
4: Female leader, appointed on ability 30 2.10

Table 3.
Results for three examples. The posterior probabilities of the hypotheseswere computed assuming equal prior probabilities.
In some cases the posterior probabilities do not sum to 1 due to rounding.

Example Bayes factor P(H0|x) P(H1|x) P(H2|x) P(H3|x)

Example 1 BBF 0.74 0.23 0.04 —
GFBF 0.12 0.72 0.17 —
AFBF 0.04 0.91 0.05 —

Example 2 BBF 0.35 0.48 0.14 0.03
GFBF 0.28 0.40 0.25 0.07
AFBF 0.24 0.43 0.28 0.06

Example 3 BBF 0.37 0.62 0.00 —
GFBF 0.16 0.82 0.03 —
AFBF 0.12 0.86 0.02 —

are reached for sample sizes of 100 (BBF) and 50 (GFBF, AFBF), while under a small effect we
need sample sizes of 1000 to surpass this mark.

6.6. Robustness to Non-normality

To check for robustness of the proposed Bayes factors, we repeated the simulation study
from the previous section with non-normal data. We considered t-distributed as well as skew-
normally distributed data. The simulation setup was the same as in Sect. 6.5.1, except that the
data were sampled from a t (μ j = 0, σ j , ν = 5) distribution and a SN (μ j = 0, σ j , α = 4)
distribution, respectively, where α is the shape parameter of the skew-normal distribution and
the scale parameters σ1, . . . , σ4 were specified according to Table 1. A Bayes factor is robust in
this setting if it shows large sample consistent behavior in the sense that the expected posterior
probability of the true hypothesis goes to 1 as the sample size increases despite the data coming
from a non-normal distribution.

For the sake of brevity, we only present the simulation results for 4 populations and a medium
effect in this section. The results are shown in Fig. 3. The plots show the expected posterior
probability of the true hypothesis for data coming from a t-distribution (solid lines) and a skew-
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Figure 3.
Results of a simulation study investigating the robustness of the three automaticBayes factors to non-normalitywhen testing
variances of 4 populations.We considered data coming from a t-distribution (dashed lines) and a skew-normal distribution
(solid lines). The scale parameters of the distributions were specified according to five patterns: a σ 2

1 = · · · = σ 2
4 , b

σ 2
1 < · · · < σ 2

4 , c σ 2
1 = σ 2

2 < σ 2
3 = σ 2

4 , d σ 2
2 < σ 2

1 < σ 2
3 < σ 2

4 , and e σ 2
4 < · · · < σ 2

1 . In patterns b to e, we
used a medium size of the order effect. For each combination of pattern and distribution we drew 1000 samples of size
n1 = · · · = n4 = n. In each sample, we then tested four hypotheses: H0 : σ 2

1 = · · · = σ 2
4 , H1 : σ 2

1 < · · · < σ 2
4 ,

H2 : σ 2
1 = σ 2

2 < σ 2
3 = σ 2

4 , and H3 : ¬ (H0 ∨ H1 ∨ H2). Eventually, we computed the expected posterior probability of
the true hypothesis P̄(Ht |x) across the 1000 samples. The plots show P̄(Ht |x) as a function of the common sample size
n for the BBF (red lines), GFBF (green lines), and AFBF (blue lines) (Color figure online).
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normal distribution (dashed lines), respectively. In general, the Bayes factors appeared to be robust
to non-normality, as can be seen from the posterior probabilities approaching 1 as the sample size
increases. Furthermore, the differences between the three Bayes factors were the same as in the
simulation study with normally distributed data (cf. Fig. 2): On the one hand, the BBF provided
stronger evidence in favor of true hypotheses containing equality constraints (Fig. 3a and c),
except under the mixed pattern and small samples (see Fig. 3c). The GFBF and AFBF, on the
other hand, yielded stronger evidence in favor of a true order-constrained hypothesis (Fig. 3b)
and complement (Fig. 3d and e). The results for the remaining conditions in the simulation study
were similar. Most importantly, the three automatic Bayes factors showed robust behavior in these
conditions as well.

7. Motivating Examples (Continued)

We next apply the three automatic Bayes factors to actual data from the three motivating
examples introduced in Sect. 2. We begin with the hypothetical study with four treatment groups
from Weerahandi (1995). Here, we formulated the following three hypotheses on the group vari-
ances: H0 : σ 2

1 = · · · = σ 2
4 , H1 : σ 2

1 < · · · < σ 2
4 , and H2 : ¬ (H0 ∨ H1). Table 2 (Example 1)

shows the sample sizes and sample variances of the four treatment groups as reported by Weera-
handi. It appears that the data support H1 since the sample variances follow an increasing pattern.
We applied the Bayes factors to the data to determine the evidence in favor of the three competing
hypotheses. The results are shown in Table 3 (Example 1). The posterior probabilities of the
hypotheses were computed assuming equal prior probabilities. It can be seen that the BBF favors
H0. The GFBF and the AFBF, on the other hand, favor H1, with the AFBF indicating considerably
weaker evidence in favor of H0 and H2. Overall, the results are in line with the findings of the sim-
ulation study, where the BBF provides stronger evidence in favor of the null hypothesis, whereas
the GFBF and the AFBF yield stronger evidence in favor of inequality-constrained hypotheses.
The fact that the GFBF and the AFBF support the order-constrained hypothesis H1 despite the
small sample sizes is due to the large effect size of s24/s

2
1 = 3.61/0.30 = 11.93. Comparing

the logarithm of this effect size with the results in the bottom row of Fig. 1 indicates that the
preference of the BBF for the null hypothesis may be a result of information inconsistency: From
the plots, it can be seen that for an effect size of log(11.93) = 2.48 the BBF already shows
information inconsistent behavior. This suggests relying on the results of the GFBF or the AFBF,
which indicate evidence in favor of the order-constrained hypothesis H1 stating that the variance
increases across the treatment groups.

In our second motivating example (taken from Silverstein et al., 1995), we formulated the
following hypotheses on the variances of the attentional performances of unaffected controls
(group 1), Tourette’s patients (group 2), and ADHD patients (group 3): H0 : σ 2

1 = σ 2
2 = σ 2

3 ,
H1 : σ 2

1 = σ 2
2 < σ 2

3 , H2 : σ 2
1 < σ 2

2 = σ 2
3 , and H3 : ¬ (H0 ∨ H1 ∨ H2). Table 2 (Example 2)

shows the sample variances of the attentional performances in the three groups. The results are
shown in Table 3 (Example 2). It can be seen that the three automatic Bayes factors produce
similar results. In particular, the three Bayes factors favor H1, which states that Tourette’s patients
are as heterogeneous as unaffected controls, and both groups are less heterogeneous than ADHD
patients. However, while we can rule out the complement H3, the posterior probabilities indicate
some evidence in favor of H0 and H2. It can be seen that the AFBF provides somewhat stronger
evidence in favor of the inequality-constrained hypotheses than the GFBF. This behavior was also
observed in the numerical studies in Sect. 6.

In our final motivating example (taken from Lucas, 2003), the following hypotheses were for-
mulated on the variances of the group leaders’ influence (as measured by the number of times that
a participant changed his/her opinion to match the group leader’s opinion): H0 : σ 2

1 = · · · = σ 2
4 ,
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H1 : σ 2
2 = σ 2

4 < σ 2
1 = σ 2

3 , and H2 : ¬ (H0 ∨ H1), where
{
σ 2
1 , σ 2

2 , σ 2
3 , σ 2

4

}
are the variances

of the groups whose leader is {(male, random), (female, random), (male, based on ability),
(female, based on ability)}. Table 2 (Example 3) shows the sample variances of the counts in
the four experimental groups. The results of the multiple hypothesis test are shown in Table 3
(Example 3). It can be seen that H1 receives strongest support from all three automatic Bayes
factors. While there is some evidence in favor of H0 (especially for the BBF), the complement H2
can be ruled out given posterior probabilities close to 0. In conclusion, the Bayes factors indicate
that the variance is greater when the leader is male rather than female and that there is no effect
of the way the leader was appointed.

8. Conclusion

In this article, we presented three automatic Bayes factors for testing (in)equality-constrained
hypotheses on variances.Wefirst introduced the balancedBayes factor, which is based on identical
automatic priors for the unique variances under each hypothesis. The hyperparameters of this prior
are determined automatically using information from the sample data. The second Bayes factor
is the fractional Bayes factor of O’Hagan (1995), which we derived for testing (in)equality-
constrained hypotheses on variances. We proposed a generalization of the fractional approach
using population-specific fractions instead of a common fraction. The third Bayes factor we
presented is an adjustment of the fractional Bayes factor such that the parsimony of inequality-
constrained hypotheses is incorporated. The three Bayes factors are fully automatic for testing
multiple hypotheses with equality and inequality constraints on the population variances. There
is no need for the user to specify priors under all hypotheses to be tested. Instead, the user only
needs to provide the sample sizes and sample variances.

The Bayes factors were evaluated based on six criteria. First, the (implicit) prior in each
Bayes factor contains minimal information. Second, all three Bayes factors are scale invariant.
Third, results of numerical studies indicated that the GFBF does not properly function as an
Occam’s razor when testing inequality-constrained hypotheses on variances. The BBF and the
AFBF, on the other hand, always behaved as an Occam’s razor in this situation. Fourth, numerical
results indicated that the BBF is information inconsistent when testing (in)equality-constrained
hypotheses. The GFBF and AFBF, on the other hand, showed information consistent behavior.
Fifth, all three Bayes factors are large sample consistent. Sixth, results of a simulation study
indicated that the three Bayes factors are robust to violations of normality in the data. Based on
our findings we recommend the AFBF for quantifying the relative evidence in the data between
multiple constrained hypotheses on variances when prior information about the magnitude of the
effects is unavailable.

In this article, we tested hypotheses involving equality and inequality constraints with equal
coefficients for the variances. Thus, each hypothesis states whether a certain variance is larger
than, equal to, or smaller than another variance. Experience has shown that relationships between
variances can often be appropriately described using hypotheses of this type, as we illustrated with
ourmotivating examples. In fact, other popular models in the psychological sciences imply similar
relationships between the variances. For example, in the random slope model the variance may
either decrease over time, increase over time, or first decrease and then increase over time (e.g.,
Snijders & Bosker, 2012). In practice, however, the true hypothesis might be a more complicated
function of the variances such as σ 2

1

/
σ 2
2 < σ 2

3

/
σ 2
4 . While such hypotheses cannot be tested

directly with our Bayes factor approaches, there is a way to safeguard against making erroneous
conclusions in case the true hypothesis is a complicated function of the variances. When testing a
set of (in)equality-constrained hypotheses on variances, it is advisable to include the complement
of the hypotheses under consideration. This way, the complete parameter space is covered by the
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hypotheses. Allowing the user to directly specify more complicated hypotheses is an interesting
topic for future research. Here, the challenge is to incorporate the complicated constraints when
computing the marginal likelihoods.

The Bayes factors we presented in this article can also be used to test the assumption of
homogeneity of variances before conducting a classical F-test in an ANOVA setting. Here the null
hypothesis stating homogeneity of variances can be tested against the unconstrained alternative
hypothesis. This approach has two advantages: First, there is no need to adjust the significance
level in the F-test for multiple testing. Second, the Bayes factors are able to quantify the evidence
in favor of homogeneity of variances, which is a useful property for determining whether this
assumptions holds. A natural extension of our testing approach would be to consider hypotheses
with constraints on the population variances as well as the population means in the ANOVA
setting. Such a method would be useful when a researcher would like to simultaneously test
(in)equality constraints on the variances and the means. An example of a multiple hypothesis test
with (in)equality constraints on the means in an ANOVA setting can be found in Mulder (2014b).
The author computed the Bayes factors under the assumption of homogeneity of variances. This
assumption could be relaxed, allowing for the specification of constrained hypotheses on both the
means and the variances. A joint prior distribution on the means and the variances could then be
specified using a combination of the methods discussed in this article and in Mulder (2014b).

Further extensions of our approach to testing (in)equality-constrained hypotheses on vari-
ances are conceivable. The problem of testing constraints on variances also naturally arises for
repeated measurements and other types of data where there is a dependency between the observa-
tions. Such data can be analyzed with different kinds of models. First, one might consider using
a multivariate regression model where the errors are assumed to follow a multivariate normal
distribution with covariance matrix �. Equality- and inequality-constrained hypotheses could
then be formulated on the variances on the main diagonal of �. A second option would be using
a random effects model to take into account that observations are dependent. In such a model,
(in)equality-constrained hypotheses could be formulated on the variances of the random effects
(in the spirit of Mulder & Fox, 2013) or the errors. Similarly, (in)equality-constrained hypotheses
could be formulated on the random effects variances in item response models (building on the
work of, e.g., Fox, Mulder, & Sinharay, 2017, and Verhagen & Fox, 2013). Another area where
dependencies between variables play an important role is in structural equation modeling. Here,
(in)equality-constrained hypotheses on variances are conceivable as well. For example, in a factor
analytic model one might be interested in testing constraints on the variances of the indicators’
errors. The current article will be a good starting point for testing variance components in these
more complex models.

Appendix A: Computation of mB
t (x, b)

The final expression for the marginal likelihood under an (in)equality-constrained hypothesis Ht

in the balanced Bayes factor can be derived as follows:
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where in the third line we may drop the indicator function because the integration region for the
variances is already restricted to �t , and the integrand in the fifth line is a product of kernels of

scaled inverse-χ2 distributions with degrees of freedom parameters νk = ν +
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Appendix B: Computation of mGF
t (x, b)

In the generalized fractional Bayes factor, the marginal likelihood under an (in)equality-
constrained hypothesis Ht is defined as
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We first derive the denominator:
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The expression for the numerator in Eq. (31) is identical to the final expression in Eq. (32) with
all b’s equal to 1, that is,
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The final expression for the marginal likelihood in Eq. (31) is then given by
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Table 4.
Overview of the population variances used in the simulation study with 6 populations.

Population Effect σ 2
1 σ 2

2 σ 2
3 σ 2

4 σ 2
5 σ 2

6

Null No 1.00 1.00 1.00 1.00 1.00 1.00
Order Small 1.00 1.09 1.19 1.30 1.42 1.54

Medium 1.00 1.22 1.48 1.80 2.19 2.66
Large 1.00 1.33 1.78 2.38 3.17 4.23

Mixed Small 1.00 1.00 1.00 1.33 1.33 1.33
Medium 1.00 1.00 1.00 2.00 2.00 2.00
Large 1.00 1.00 1.00 2.94 2.94 2.94

Near order Small 1.09 1.00 1.19 1.30 1.42 1.54
Medium 1.22 1.00 1.48 1.80 2.19 2.66
Large 1.33 1.00 1.78 2.38 3.17 4.23

Reverse order Small 1.54 1.42 1.30 1.19 1.09 1.00
Medium 2.66 2.19 1.80 1.48 1.22 1.00
Large 4.23 3.17 2.38 1.78 1.33 1.00

Appendix C: Computing the Probability That σ 2
t ∈ �t

The integrals inEqs. (15), (20), (21), and (25) canbe approximatednumerically using the following
Monte Carlo approach. For the BBF and the GFBF, we first sample σ
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, for s = 1, . . . , S, and νk and

τ 2k are as in Eqs. (15), (20), and (21), respectively. An approximation of the probability that the
inequality constraints on the unique variances hold is then given by the proportion of draws that
fall in �t , that is,
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For the AFBF, let φk = akσ 2

k . We then proceed analogously to the BBF and the GFBF: First, we
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where φt = [φ1 · · · φKt

]T and φ
(s)
t =

[
φ

(s)
1 · · · φ

(s)
Kt

]T
.

Appendix D: Simulation Results for J = 6 Populations

In the simulation with 6 populations, we considered the same factors as in the simulation with
4 populations (cf. Sect. 6.5.1). First, we used the same patterns of the population variances: null
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Figure 4.
Results of a simulation study comparing the performance of the three automatic Bayes factors in testing variances of 6
populations. We examined five different patterns of the population variances: a σ 2

1 = · · · = σ 2
6 , b σ 2

1 < · · · < σ 2
6 , c

σ 2
1 = σ 2

2 = σ 2
3 < σ 2

4 = σ 2
5 = σ 2

6 , d σ 2
2 < σ 2

1 < σ 2
3 < · · · < σ 2

6 , and e σ 2
6 < · · · < σ 2

1 . In patterns b to e we considered
three different sizes of the order effect: small, medium, and large. For each combination of pattern and effect size, we
drew 1000 samples of size n1 = · · · = n6 = n. In each sample we then tested four hypotheses: H0 : σ 2

1 = · · · = σ 2
6 ,

H1 : σ 2
1 < · · · < σ 2

6 , H2 : σ 2
1 = σ 2

2 = σ 2
3 < σ 2

4 = σ 2
5 = σ 2

6 , and H3 : ¬ (H0 ∨ H1 ∨ H2). Eventually, we computed

the expected posterior probability of the true hypothesis P̄(Ht |x) across the 1000 samples. The plots show P̄(Ht |x) as a
function of the common sample size n for the BBF (red lines), GFBF (green lines), and AFBF (blue lines) under a small
effect (dotted lines), medium effect (dashed lines), and large effect (solid lines) (Color figure online).
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(σ 2
1 = · · · = σ 2

6 ), order (σ
2
1 < · · · < σ 2

6 ), mixed (σ 2
1 = σ 2

2 = σ 2
3 < σ 2

4 = σ 2
5 = σ 2

6 ), near
order (σ 2

2 < σ 2
1 < σ 2

3 < · · · < σ 2
6 ), and reverse order (σ 2

6 < · · · < σ 2
1 ). Second, we again used

the approach of Böing-Messing et al. (2017) to determine the population variances for a small,
medium, and large effect. The resulting values of the variances are shown in Table 4. Note that the
values for the variances in the mixed pattern are the same as in the simulation with 4 populations
(cf. Table 1) because in both cases there are only two unique variances. Third, we used common
sample sizes n ∈ {5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000}. The hypotheses we
tested in each conditionwere analogous to those in the simulationwith 4 populations (cf. Eq. (29)):
H0 : σ 2

1 = · · · = σ 2
6 , H1 : σ 2

1 < · · · < σ 2
6 , H2 : σ 2

1 = σ 2
2 = σ 2

3 < σ 2
4 = σ 2

5 = σ 2
6 , and

H3 : ¬ (H0 ∨ H1 ∨ H2). The results of the simulation with 6 populations are shown in Fig. 4. A
notable difference between the results of the simulations with 4 and 6 populations is that under the
near-order patternwith 6 populations even larger samples are needed to detect that the complement
H3 is true (cf. Figs. 2d and 4d). This is because the ratio of adjacent variances is smaller in the
case of 6 populations (cf. Tables 1 and 4), which makes it more difficult for the Bayes factors to
detect that the order of the first two population variances is reversed. Note that in Figs. 4a and e
the lines for the GFBF and AFBF overlap to a large extent.
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