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Abstract

Over the last decades there has been an increasing interest in personalization:
can we make sure that treatments are effective for individual patients? The
quest for personalization affects biomedical informatics in two ways: first,
we design systems—for example eHealth applications—that directly interact
with patients and these systems might themselves one day be personalized.
Hence, we seek effective methods to do so. Second, we design systems that
collect the data which will one day be used to personalize treatments: hence,
we need to critically consider design requirements that improve the utility
of (e.g.,) personal health records for future treatment personalization. By
clearly defining personalization and analyzing the effectiveness of different
personalization methods this discussion highlights how we should embrace
sequential experimentation—as opposed to the traditional randomized trial—
if we want to personalize our informatics systems efficiently. Furthermore,
we need to make sure that we capture the treatment assignment process in
our health records: doing so will greatly increase the utility of the collected
data for future personalization attempts.
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1. Introduction

In the last decade authoritative scientific journals such as Science [1] and

the New England journal of Medicine [2], as well as legislative bodies such

as the American Food and Drug Administration (FDA) and the European

Union (EU), have stressed the importance of personalized healthcare. By

personalizing medical treatments, where the term treatment covers a broad

range of interventions, from medication to education to eHealth, we can

improve their effectiveness, decrease costs, and provide better care.

The idea that personalization is effective is based on the existence of treat-

ment effect heterogeneity : we generally believe that the effect of a specific

treatment is different for different patients. In the last decades, driven by

advances in a wide range of fields from genomics to medical imaging, the ex-

istence of treatment effect heterogeneity has been firmly established. To give

a concrete example, in August 2011, the FDA approved the drug Zelboraf to

treat metastatic melanoma [see, for example 3]. Metastatic melanoma is a

highly aggressive form of skin cancer with a low 5-year survival rate. Zelboraf

is a drug that works by inhibiting a gene mutation, however, this mutation

is only found in approximately half of the patients. Zelboraf is ineffective for

those without the mutation. Luckily we can find the mutation, and we can

accurately predict for which patients the treatment will be effective.

Examples such as Zelboraf that show that personalizing treatments can

significantly improve their effectiveness. Indeed, the Zelboraf case demon-

strates the benefits of providing the right treatment to the right patient, at

the right dose at the right time; the very definition of personalized healthcare

as used by the EU [4].

Regretfully, this definition is not very informative: it does not provide any

guidance on how to make personalized healthcare a reality. This discussion

examines an alternative, and more constructive, definition of personalization

in the health and life sciences. This alternative definition is useful since it

allows us to pinpoint the key methodological and statistical challenges we
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face when trying to make personalized healthcare a reality. The subsequent

analysis highlights the two ways in which future personalization attempts

will affect research in biomedical informatics:

1. We design and evaluate systems that directly interact with patients [see,

e.g., 5, 6, 7]. These systems are increasingly personalized. Hence, we

seek effective (statistical) methods to personalize treatments — i.e., to

select a treatment for an individual given the available data — and we

seek methods to evaluate the effectiveness of personalize systems. This

discussion argues that our current reliance on randomized controlled

trials (RCTs) for these purposes is ineffective and we should explore

sequential and adaptive experimentation methods.

2. We design and evaluate systems that collect, contain, and combine

health data [see, e.g., 8, 9]. Whether or not the data in these systems

can be used for effective personalization [10] depends heavily on the

data we store and the ways in which we make this data accessible.

In this discussion we argue that we need to store all treatment actions

and their respective probabilities, as well as the associated outcomes, to

ensure that our collected data will be useful for future personalization

attempts.

The next section provides a definition of treatment personalization and

uses it to analyze the current approach to personalization which is largely

based on the randomized controlled trial (RCT). Subsequently, an alterna-

tive, sequential, approach to choose the right action for the right patient

is formulated and evaluated. Finally the impact of sequential methods for

treatment personalization on biomedical information systems and personal

health data is discussed.

2. A general definition of personalized healthcare

In an attempt to better understand personalized healthcare and the pos-

sible challenges for biomedical informatics, let us revisit the EU’s definition:
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“Providing the right treatment to the right patient, at the right dose at the

right time”. Apparently both the patient and the time are important, as well

as the choice of treatment and the associated dose. Thus, personalization can

be setup more formally by noticing that we are looking for some relation-

ship, some mapping, between the patient and the treatment on one hand,

and some associated health outcome on the other hand. This can denoted

this as

{patient, time, treatment, dose} f−→ outcome.

Based on extensive experience personalizing e-Health applications [see,

e.g., 11, 12], this notation can be changed to read:

outcome
f←− {patient, time, treatment, dose}

r
f←− {patient, time, treatment, dose}

r
f←− {x, a}

r = f(x, a; θ),

where, the first line merely reorders the left and right hand side terms. In the

second line substitutes “outcome” for the letter r which stands for reward.

Next, some structure is added: the inputs of the mapping can be partitioned

into two sets that are of separate interest:

1. The first set contains all the elements that we cannot control, often

called the context, which I will denote using the letter x. This set

includes a description of the current patient and the state of the world

at this point in time.

2. The second set contains all the elements that we can control, denoted

using the letter a. These are the actions we can take, and this set

contains of the treatment, the dose, and the timing.

Finally, the last line emphasizes that the mapping that we are interested in
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can often be parameterized in some way; θ is used to denote these parameters.

This notation should be interpreted broadly: f() can be an extremely flexible

mapping, θ can have a very large dimension, and the inputs can be extremely

diverse.

If we assume that we know the mapping f(), and thus know the exact

outcome of every treatment for every person, personalized healthcare boils

down to doing the following:

arg max
a

f(x, a).

This means nothing more than selecting the treatment that maximizes the

outcome for a given patient.

This statement is a bit over-simplified: in actuality we interact with mul-

tiple people, often multiple times, and at each interaction we select the best

action. Hence, the notation

T∑
t=1

arg max
at

f(xt, at), (1)

where T is our total number of interactions, indicates that we aim to maxi-

mize the outcome over the whole population. Let us take Equation 1 as the

definition of personalized healthcare. Hence, abstractly, personalized health-

care is a simple, albeit possibly very high dimensional, maximization prob-

lem.

Focussing on a low-dimensional example, the relationship between the

context, the actions, and the rewards can be visualized. Figure 1 shows a

possible relationship between the weight of a patient (the context in this ex-

ample), the dosage of medication (the action), and the probability of survival

(the reward). The Figure indicates that low weight patients require a low

dosage of medication to be effective, and that too high a dose can lead to

adverse effects. The three panels on the right of Figure 1 illustrate the per-
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sonalization challenge: when a child weighting 20 kilograms presents herself,

effectively the context is fixed and hence we are looking at a 2d slice of the 3d

plot. Subsequently, we can look at the possible dosages for this specific child,

and we find that the optimal dosage choice is a bit over 1
2
. If, at the next

interaction, we are presented with an adult weighting in at 60 kilograms, we

look at another slice of our plot and see that the optimal dose is close to 1.

Although this is a very simplified situation, this example illustrates that as

long as we know the function that relates the context and the actions to the

rewards, we can simply pick the action that leads to the highest outcome for

every patient we encounter.
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Figure 1: Simple visualization of the possible relationship between context, action, and
rewards. This example display the (hypothetical) relationship between the weight of a
patient, the dosage (in Mg) of some medication, and the survival rates; clearly, for light
patients the optimal dose is different than for heavy patients. The smaller Figures on the
righthand-side of the Figure illustrate different slices associated with different contexts.

The above definition formalized “right” in terms of maximizing some out-

come and it split up our set of variables into those that we have under our

control (the dose) and those that we do not have under our control (the
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weight), which is a methodologically important distinction. Also, the defini-

tion highlights the sequential nature of personalization: we select treatments

at each interaction that we have with patients. These notions jointly allow

us to better understand the problem that we are facing when personalizing

biomedical informatics systems and collecting the data necessary for future

personalization.

2.1. The challenges of treatment personalization.

In the stylized example above personalizing treatments seemed easy: we

just compute which action has the highest reward. In reality however, person-

alizing is not easy. The most important reason that today most treatments

are still “one-size-fits all” [2, 1] is the simple fact that we, in actuality, do

not know the relationship between between the context, our actions, and the

resulting rewards. In short, f() in Equation 1 is not known to us.

Since we do not know f(), we have to learn f() using the inherently

limited and often noisy data that we have at our disposal. Thus, we are not

faced with a seemingly doable maximization problem, but in practice we are

faced with a challenging sequential learning problem: as we go along and

treat patients we need to gradually learn which treatment is right for whom.

This sequential learning is challenging for three reasons:

1. High dimensional learning from noisy data: The first challenge

we face in developing personalized healthcare is that we need to learn

f() using limited and often noisy data. This learning problem is com-

plicated by the fact the space of the problem is tremendous : in practical

terms this means that the relevant background characteristics of a pa-

tient are not just the weight, but rather the weight, age, genetic make-

up, their culture, etc. etc. Similarly for the possible treatment; we do

not just choose a dose, but we choose a combination of interventions,

medicines, and treatments. Thus, any method to develop personalized

healthcare needs to a) deal with the inherent uncertainty that arises
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from the limited number of observations that are available, and b) find

an effective way to deal with the extremely large space of the learning

problem.

2. Learning causal relationships: The second challenge is presented

by the fact that what is learned from observational data—which much

of the data we have at our disposal in, for example, electronic patient

records actually is—might not properly reflect the knowledge we seek,

namely, the effect of changing our treatments. To illustrate, suppose

we currently, and naively, set out to model the relationship between

chemotherapy (the action) and survival rates (the outcome) for breast

cancer patients (the context) on existing registry data. In the obser-

vational data we will find that those who do not receive chemotherapy

have a higher survival rate than those who do. However, this higher

survival rate is not caused by refraining from chemotherapy; actually,

patients with a mild tumors are both less likely to receive chemotherapy

and are more likely to survive. The relation present in the observational

data is thus explained by a common cause and does not quantify the

causal effect of the treatment. Since we need to learn a function that

explicitly contains the effect of the “things that we can control”, we

need to be very careful about this distinction.

3. Balancing learning and earning: Thirdly, compared to so-called

supervised learning—a well understood machine learning task in which

a computer learns a function between some observed input and some

desired output [13]—our problem is complex since we do not have any

data regarding the outcomes of actions that we have never actually tried

out. Hence, anytime we select a treatment, we need to balance choosing

the best treatment as dictated by our current knowledge with the value

of trying out new treatments that allow us to learn more about f().

This problem is known as the “exploration-exploitation trade-off” or

simply the “earning vs. learning problem”. The problem arises because
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we have to learn f() based on data with so-called “bandit feedback”;

we do not observe what would have happened if we had administered

another treatment [see, e.g., 14, 15, 16, 17, 18].

These three problems, learning complex functions that properly model the

causal effects of interest based on bandit feedback, comprise the major chal-

lenges involved in personalized personalization.

3. Our current method: the RCT

Successful instances of personalized healthcare—such as the Zelboraf treat-

ment for melanomas—do exist. Hence, we must have solved, or at least ad-

dressed, the challenges involved. Let us have a good look at how we currently

address these problems.

In evidence based medicine today the RCT constitutes our highest level

of evidence [19, 20]. The RCT is conceptually simple: randomly, for example

by flipping a coin, we administer treatment A to half of our patients, and

treatment B to remaining half. Next, after treating a pre-determined number

of patients n in this way with either treatment A or B, we examine the

outcome of interest in both groups. If, on average, in group A the outcome

is higher then in group B, we select treatment A. For the dose finding

example this would boil down to treating 100 patients with a low dose, say 1
2

Mg, while another 100 patients would receive a high dose, say 1 Mg. Based

on our example function given previously (see Figure 1), a naive RCT would

conclude that the 1Mg dosage outperforms the 1
2

Mg dose, despite the adverse

effects for children. Thus, the canonical RCT addresses the three problems

highlighted above as follows:

1. High dimensional learning from noisy data: The RCT tackles

the problem of high-dimensional learning from noisy data in two ways;

first, the RCT heavily limits the problem space by pre-selecting a very

small number of actions and contexts. The RCT compares only two
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treatments, and, only when the focus is on personalized healthcare,

includes a very small number of descriptions of the context. When

there is no focus on personalization the context is fully ignored. Exactly

which treatments and which contexts to focus on is determined by

our theoretical understanding of the process involved. Second, after

limiting the problem space based on our existing theories, RCTs use a

fairly simple method of dealing with noise; if, assuming that the two

treatments have the exact same outcome, the actually observed, or a

more extreme outcome is unlikely—quantified using the p-value—we

reject the null hypothesis that the treatments are equally effective, and

adopt whichever treatment had the highest average outcome in the

trial.

2. Learning causal relationships: The RCT tackles the problem of

learning the causal effect of the actions by virtue of its use of ran-

domization. By “flipping the coin” we determine who receives which

treatment, and we make sure that this treatment assignment is not con-

founded by patient characteristics such as the “severity of the tumor”

as in the breast-cancer example.

3. Balancing learning with earning: To appreciate how the RCT

solves the last challenge, we have to view the RCT not just on its

own, but we have to include the treatments that are administered after

the RCT has been carried out. For example, after the Zelboraf trail,

we now routinely treat melanoma’s using Zelboraf. Approached in this

way we can see that the RCT balances learning and earning by first

spending a pre-determined number of interactions on learning (the trial

itself), and subsequently moving to earning: after the trial, the results

are accepted with full certainty, and future patients will receive the

treatment that performed best during the trial.

Note that the RCT is not inherently a method for personalization; rather,

it is a method for selecting one out of two competing treatments. However, by
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doings RCTs within subgroups of patients—for example within all children

with a low weight—this method is now the gold standard to select treatments

for specific subgroups of patients.

3.1. Advantages of the RCT.

The RCTs approach to high dimensional learning is appealing since by

severely restricting the space of actions and context the outcomes of the trial

become transparent and human-understandable. While obviously the quality

of our restrictions of space depend heavily on the quality of the theories that

we use—something that I fear is hard to assess—the outcomes of the an RCT

are at the very least easily interpretable: the survival rate in the patient group

that received 1mg was higher than in the group that received 1
2

mg, and hence

you get 1 mg. Next, the RCTs approach to the problem of learning causal

relationships is extremely solid [21, 22]. There is no better method to assess

causal effects than randomization, which is exactly what the RCT excels at.

Finally, the RCT’s approach to balancing earning vs. learning is practically

appealing: by moving all the learning to the beginning, into the trail, and

all the earning to the resulting guidelines, we make a nice and convenient

deterministic choice.

3.2. Disadvantages of the RCT.

The analysis above allows us to identify several drawbacks of the ICT.

First of all, the singling out of very small subsets off all possible actions

and context in the repeated execution of RCTs—since in actuality we build

our knowledge one RCT at a time—basically constitutes a limited and naive

strategy for learning f(). We effectively assume that only very small parts of

the context and treatment are important and we ignore all others. Already

in our simple weight-dose example introduced earlier, the RCT would only

examine a small number of specific points in the 3d space, as opposed to

examining or modeling the whole plane of outcomes. Furthermore, perhaps
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implicitly, we assume that the relationship between context and actions is

only as complex as our theories allow us to understand.

Another disadvantage of the RCT originates from our insistence on a

hard cut-off between learning and earning. The RCT—and the deterministic

decision strategy inspired by the null hypothesis significance test—leads us

to either adopt or ignore a new treatment, possibly for some subgroup of

people, with certainty. However, these certain decisions are made based on

noisy data, and hence full certainty is too much to ask. Given limited and

noisy data there is always a non-zero probability of making the wrong choice.

And, the more we try to personalize treatments, the more severe this problem

becomes since at the level of small groups of patients we have very limited

data at our disposal. If we truly believe in treatment heterogeneity, than we

have to accept that each patient is unique and hence we will never have a

large homogenous sample available to make deterministic decisions.

Regretfully, this not the last disadvantage of the RCT as a method of

solving Equation 1; because of our determinism, the data that we collect

after a trial also turn out to be very hard to re-use: once the probability of

receiving chemotherapy for breast cancer patients with a severe tumor is 1,

and for those with a mild tumor is 0, we cannot use the future data to evaluate

alternatives simply because no such data is collected. Our deterministic

decisions prohibit our future learning.

4. Alternative, sequential, methods for personalization

This section provides a sketch of a possible alternative method to the

RCT; technical details for specific implementations can be found in the ref-

erences. As an alternative to the RCT we could start by using a mod-

ern and flexible machine learning model to learn the relationships between

the actions, context, and rewards. In recent years we have seen a revolu-

tion in our abilities to learn flexible, extremely high-dimensional functions

[13, 23, 24, 25], and hence there is no need to artificially reduce the model
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space by focusing on very small numbers of patient or treatment character-

istics. Second, we can utilize novel breakthroughs in our understanding of

causality; as it turns out, it is strictly not necessary to resort to uniform ran-

dom allocation as is done in the clinical trial to obtain unbiased estimates

of causal effects. Rather, as long as we can compute and store the proba-

bility of receiving a treatment conditional on the patient characteristics (the

propensity), we can use the collected data to estimate causal effects [26, 27].

Finally, we can use novel methods of balancing earning and learning: as op-

posed to going instantly from pure learning to a deterministic choice as in

the RCT, we can gradually balance the two. An allocation scheme called

Thompson sampling allows us to, over time, gradually change the probabili-

ties of receiving different treatments. Thompson sampling selects treatments

with a probability that is proportional to our belief that the treatment has

the highest reward [see, e.g., 28, 29]. Thus, as we gain more evidence that an

action is effective, we will increase the probability of selecting it. This way

we can optimally balance exploration and exploitation [14, 16, 18].

To be specific, we suggest to use a flexible machine learning model such as

the Bayesian additive regression tree model, or shorthand BART [30, 23, 24],

which can be denoted as follows:

r =
m∑
j=1

g(x, a; θ) + ε.

Using the BART model, the rewards are modeled as a function of both the

context and the actions using a sum over m binary decision-tree models [see

31, for details on BART]. Trees provide a flexible modeling approach that can

handle a wide variety nonlinear relationships and a large number of inputs.

While admittedly at this point in time (deep) neural network models seem to

be more popular [see 32, for an introduction], the Bayesian specification of

the BART model conveniently allows for the direct quantification of the as-

sociated uncertainty [33]. Furthermore, this model effectively guards against
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overfitting by virtue of a prior restricting trees of large depth.

The uncertainty quantification originating from the Bayesian specifica-

tion of the BART model allows for the direct implementation of Thompson

sampling: we choose our actions with a probability that is proportional to

our posterior belief that the action. This probablity is given by:∫
1

[
E(r|a, θ) = max

a′
E(r|a′, θ)

]
P(θ|D)dθ.

Although the above integral might be hard to evaluate in practice, Thompson

sampling is often easily implemented by simply taking a single MCMC draw

from the posterior and selecting the action that maximizes the expected re-

ward given that draw [see 18, for more details and alternative sampling meth-

ods]. As long as we apply this scheme, and store the probability of receiving

an action at each point in time for each patient (i.e., the propensity-score),

we can not only use BART and Thompson sampling to select actions, but

also to create a dataset that we can re-use in offline evaluations of alternative

decision policies [see 34, 35, for examples].

This alternative approach to treatment personalization can practically be

realized by, every time we visit a doctor (or go to a website for health infor-

mation, or use an motivational eHealth application), sending our data—the

context—to a central server. Next, this central server estimates a model that

relates the context, the actions, and the rewards. This model is our estimate

of the illustrious function f() in our definition of personalization. Finally, the

central server selects an action based on this model while balancing learning

and earning. Note that as a result of this method we never make a definite

choice between different treatments. However, we do make the best choice

we can given all the information available. Admittedly, this might look a

bit distant from reality. However the models we propose, and the methods

by which earning and learning can be balanced, are already, at least con-

ceptually, developed. Also, we can already transmit large amounts of data
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around the world in a split second; large web companies like Facebook and

Google do this constantly. Hence, in the near future, this suggestion is at

least technically feasible.

4.1. Disadvantages of sequential methods for personalization

Contrary to the RCT, let us start by discussing the disadvantages of a

sequential and adaptive approach to personalization. Two disadvantages eas-

ily come to mind, the first being “which variables, thus which contexts and

which actions, should we include in such a gigantic machine learning model?”,

And the second “which outcomes should we actually care about?” These are

genuine questions, but they are not disadvantages of the method: these ques-

tions equally need answers when designing an RCT. Actually, the proposed

sequential approach allows for much greater flexibility than the RCT: we can

include a larger number of contextual variables and we can potentially collect

data regarding multiple outcomes. Thus, if anything, the proposed method

makes answering these questions easier as opposed to harder.

However, there are more serious concerns: First of all, the proposed ap-

proach looses, at least superficially, all notions of transparency. It is not at

all clear anymore why a specific patient, at some specific point in time, re-

ceives a specific treatment. This will be hidden away in some “black-box”

learning model. While the underlying logic can theoretically still be distilled

from the model parameters, such distilling is not easy. And, by loosing trans-

parency, we probably also loose accountability ; if we don’t know why we are

subscribing some treatment, than who should we hold responsible in case

of a calamity? Next, the proposed method, at least in theory, never leads

to a definite, deterministic, choice. Hence, there will always be a non-zero

probability of receiving a specific treatment. This might be fine for things

like eHealth coaching and health education, but we will be presented with a

logistic nightmare if we intend to keep all possible pills available at all phar-

macies all around the world for the unlikely event that we should administer

one of them.
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By abandoning the RCT assessing causality becomes more challenging.

How can we still be sure that the model we learn is actually learning the

effects of our treatments, and not learning some spurious, non-causal, rela-

tionship? In recent decades this problem has however largely been solved

[26, 27, 36, 22]: we have recently come to realize that as long as we know the

probability of receiving a treatment, we can validly estimate causal effects

even when treatments are not uniformly randomized.

4.2. Advantages of sequential methods for personalization

Why should we consider these novel, sequential, methods? They seem

plagued with challenges. However, these novel methods should be adopted

for one simple reason: with these methods we will have a better outcome.

Now that’s a bold statement, and one that is hard to quantify for healthcare

in general. The number of future interactions, the number of possible actions,

and the number of meaningful contextual factors is simply too large to say

anything remotely precise for the healthcare system as a whole. However,

at smaller scales, for simple versions of the personalization problem, we can

actually quantify the benefits.

The performance of a personalization method can be evaluated. We of-

ten measure the quality of a policy—a decision-making strategy that dictates

which treatment to select for whom given our historical data—in terms of

its regret: the realized outcome of a method compared to the outcome we

could have achieved with full information. Suppose we compare the RCT—

which itself is, combined with the resulting guidelines, just another allocation

policy—to my proposal in a simple case in which we choose one of two possible

treatments for 1000 (homogenous) patients, and where the true probabilities

of success are .4 and .5. In the worst case we would obtain an expected 400

successes, while in the best case we expect to obtain 500 successes. Thus, a

strategy that always selects the poorest treatment obtains a regret of 100,

while randomly picking treatments results in an expected regret of 50. In this

setting, the RCT has an expected regret of about 36, while my proposal—
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coined “Computational Personalization” in the Figure—weighs in at about

12; a difference of 25 successes as shown in Figure 2a. This difference results

from a better balancing of earning and learning. Furthermore, the difference

is magnified when we include a context and focus on smaller and smaller

groups of patients; this is exactly what we do when we personalize our treat-

ments.

Scaling the problem to 10.000 decisions and 10 possible treatments (with

success probabilities .5, .4 for the best two, and .3 for those remaining), the

superior performance of sequential allocation using Thompson sampling is

even more striking: the regret of the RCT is 800, while that of the sequential

policy is only 400, as displayed in Figure 2b. Even more interestingly, the

practice of sequential, binary RCTs identifies the best treatment in only 3
4

of the cases while for my proposed method the probability of finding the

best treatment converges to 1. This latter difference is caused by stepping

away from simple binary tests to learn a complex relationship, as is the case

with the RCT, towards examining and comparing multiple treatments in

one go. Again, this difference is magnified when we consider personalized

treatments since the more we expand the context-action space, thus, the

more characteristics of the patient or the treatment we consider, the poorer

the performance of the RCT will be.

Finally, as long as we store the probabilities of receiving a specific treat-

ment conditional on the context, we can effectively re-use the data that we

collect; something that is almost impossible when using RCTs. A recent

theoretical analysis by Agarwal et al. [35] shows that such re-use of the data

reduces estimation errors of our models by orders of magnitude. Figure 2c

shows the estimated standard errors as a function of the number of data-

points collected using the different methods. Simply put, using a computa-

tional approach to personalization allows us to learn more efficiently than
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Figure 2: Three panels showing the superior performance of a sequential method for
personalization and the RCT. The first two panels show the effectiveness and efficiency
of sequential treatment selection over the RCT in terms of the regret of each policy:
a computational approach that implements Thompson sampling outperforms the RCT
when making a binary choice between treatments for a population of N = 1000 patients
(panel A), and when (sequentially) making a choice between 10 competing treatments
for a population of N = 10000 patients (panel B). Panel C demonstrates the standard
error of an estimator as a function of the number of datapoints when comparing the two
procedures Agarwal et al. [the latter result is adapted from 35].

using repeated RCTs.1

These simple computations show that the RCT is outperformed by se-

quential experimentation methods. Furthermore, it is reasonable to expect

that the RCT will comparatively suffer more from making the problem more

realistic, and therefore more complex. Thus, if anything, the presented differ-

ences in expected outcomes are underestimates of the actual outcomes rather

than overestimates.

5. Conclusion

This discussion tried to analyze formally what we mean by personalization

in healthcare and biomedical-informatics. By providing a formal definition

of personalization we were able to critically evaluate the current approach to

1The [R] scripts to replicate the results presented here can be downloaded at http:

//www.nth-iteration.com/downloads/.
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personalization—performing RCTs amongst smaller and smaller subgroups

of patients—to alternative sequential methods. Admittedly, the alternative

can be operationalized in a number of ways; effective implementations will

depend on the context and on practical, technical and ethical constraints.

However it remains that if we effectively and efficiently want to personalize

treatments, we need to step away from the RCT and embrace adaptive se-

quential methods. Furthermore, we need to make sure that our data is stored

such that future, offline, evaluations of alternative treatment allocation poli-

cies are possible.

The arguments provided in this discussion have consequences for our cur-

rent practice. First of all, if we design systems that directly interact with

patients [see, e.g., 5, 6, 7], we should consider effective methods to personalize

the information presented in these systems. Three recommendations follow

from our analysis:

1. We should move away from the traditional idea implicit in clinical tri-

als that we can select, based on a limited time trial, the most effective

intervention for all patients. Rather, we should embrace the fact that

we live in a dynamical world in which interventions come and go, esti-

mates of intervention effects always contain uncertainty, and the effects

of interventions are heterogeneous. Hence, we need to embrace sequen-

tial and adaptive approaches. Admittedly, the analysis of sequential

experimentation methods is more involved than that of our current,

static, RCTs. However, many methods to do so exist, and the impli-

cations of sequential allocation on frequentist errors (i.e., Type I and

Type II) errors are properly understood for many sequential designs

[see 37, for a thorough introduction] and recently developed ability

to fit complex supervised learning models on extremely large datasets

enable us to implement the analysis suggested in this discussion. Fur-

thermore, sequential designs are administratively and organizationally

more challenging than traditional designs since treatment allocation
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probabilities change over time: we would argue however that the tech-

nological means necessary to carry out sequential allocation at large

scales, over multiple locations, are, by virtue of high-speed computer

networks, currently already in place.

2. We should focus not on evaluating a specific intervention, but rather on

evaluating treatment allocation policies that choose interventions for

patients. The distinction between these two concepts is meaningless

when selecting one-size-fits-all interventions: in these cases the policy

assigns the same intervention to each unit and hence evaluating the

effect of the intervention equates to evaluating the effect of the treat-

ment allocation policy. However, as we move to sequential adaptive

policies this is no longer the case: we should evaluate the outcomes

of allocation policies, and their evolution as evidence accumulates, as

opposed to the effects of interventions.

3. We should collect evidence on the progression of the effect of a set

of policies as opposed to estimating the effect of a single treatment

allocation policy at a single point in time. As sequential, adaptive,

policies trade of exploration and exploitation their effectiveness should

improve over time; it is this improvement, and the robustness to the

introduction of new interventions, that should drive our decision to

embrace a treatment allocation policy.

It might seem as though the methods proposed in this discussion inher-

ently “need” much more data than the RCT; this is however not true. Even

within current RCTs we can often benefit from adaptive, sequential alloca-

tion schemes [see, e.g., 38], and the data collected in our current RCTs can

directly be used to estimate individual level effects of treatments using the

proposed BART model [see 33]. I have tried to argue that additional benefit

can also be gained from continuous data collection after the RCT. Interest-

ingly, the proposed method could even effectively deal with much smaller

datasets: while current n = 1 trials rely solely on within subject repetitions,
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the non-parametric BART model could be used to generalize findings between

n = 1 trials be “borrowing strength” from results attained for similar—but

not the same—patients.

Next to designing patient facing systems ourselves, our field is also con-

cerned with the development and evaluation of systems that store and dis-

tribute health data [see, e.g., 8, 9]. The analysis of personalization methods

presented above gives rise to the following recommendations:

1. We should clearly separate the data we collect into context—the things

we do not control—and actions—the things we do control. Further-

more, we should store each of these accompanied by their respective

time-points and as much as possible we should associate outcomes di-

rectly to the actions—or set of actions—the most likely causes the

outcome.

2. We should make an effort to store propensities—the probabilities of

different actions given the current context—in our databases. For ran-

domized trials this is trivial. For observational data this is more chal-

lenging. Clinical guidelines should, in theory, decide which action to

choose for whom and lead to propensities of 0 or 1 which effectively

renders the data useless to evaluate alternative allocation policies of-

fline. However, we often find that guidelines are not followed closely

[39], and variation in action selection does exist. We should capture

this variation, and if its truly random we should store the respective

probabilities. We could even consider explicitly introducing random

variation when guidelines are indecisive.

Following the recommendations above would simplify the retrospective analy-

sis of health data: by adhering to methodologically driven standards it is easy

for an analysts to (re-)analyse existing health data. Furthermore, adhering

to these methodologically driven recommendations would increase the value

of our collected data: the inclusion of the causal mechanisms involved and

the relevant propensity scores will allow for the effective offline evaluation
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of treatment allocation policies. Effectively, incorporating methodological

concerns for personalization into the design of biomedical informatics sys-

tems that store personal health data has the potential to greatly increase the

utility of our health data.
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