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Abstract

Researchers routinely compute desired sample sizes of clinical trials to
control type-I and type-II errors. While for many experimental designs
sample size calculations are well-known, it remains an active area of re-
search. Work in this area focusses predominantly on controlling properties
of the trial. In this paper we provide ready-to-use methods to compute
sample sizes using an alternative objective, namely that of maximizing
the outcome for a whole population. Considering the expected outcome
of both the trial, and the resulting guideline, we formulate and numeri-
cally analyze the expected value of the entire allocation procedure. Our
approach strongly relates to theoretical work presented in the 60’s which
demonstrated the effectiveness of allocation procedures that incorporate
population sizes when planning experiments over designs that focus solely
on error rates within the trial. We add to this work by a) extending to
alternative designs (mean comparisons not assuming equal variances and
comparisons of proportions), b) providing easy-to-use software to compute
sample sizes for multiple experimental designs, and c) presenting numer-
ical analysis that demonstrate the efficiency of the suggested approach.

Keywords: Sample size calculation, clinical trial, decision policies.
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1 Introduction

Investigators should properly calculate sample sizes before the start of their

randomized controlled trials (RCTs) and adequately describe the details in

their published report(s)[Schulz and Grimes, 2005]. The landmark article by

Freiman, Chalmers, and Smith [Freiman et al., 1978] was one of the first to

highlighted the importance of sample size calculations: numerous previously

reported RCTs were severely underpowered and hence their failure to identify

the efficacy of the treatments under scrutiny could hardly be considered decisive

evidence. Precise estimation and powerful testing are innately connected to the

number of observations collected and hence a-priori sample size considerations

should be an integral part of RCT planning.

Despite the fact that for many well known RCT designs (e.g., those test-

ing for differences in means, differences in proportions, etc.) sample size cal-

culations are well known, the accurate computation of sample sizes for com-

plex designs is still an active area of research. Several authors have recently

considered sample size computations for specific — more complex — exper-

imental designs[Zhu et al., 2017, Cunningham and Johnson, 2016, Shan, 2018,

Qiu et al., 2016]. Furthermore, researchers have recently focussed on Bayesian

methods for computing sample sizes [Brakenhoff et al., 2018], and have consid-

ered the embedding of the trial within its larger context [Whitehead et al., 2016].

In all of these cases, sample size calculations aim to control the type I (false-

positive) and type II (false-negative) error rates of the RCT over repeated exe-

cutions of the trial given that the assumptions made regarding the population

that entered the sample size calculations are accurate.

In this paper we examine an alternative objective to determining sample sizes

in RCTs. We consider the RCT as merely the first stage in a two-stage treat-

ment allocation policy that, ultimately, allocates one out of a set of competing
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treatments to all individuals suffering from a specific disease (the population).

The RCT, combined with the resulting guidelines for clinical practice, jointly de-

cide which patient in the population receives what treatment. Given this setup,

sample size calculations can be motivated by a desire to maximize the expected

overall outcome over all patients in a population. This alternative objective for

sample size calculation has been studied before in the 60’s—a literature we dis-

cuss in section 2.2—and its optimization leads to a demonstrably more effective

allocation procedure than attained when planning trial sizes solely based on er-

ror rates. We hope to contribute by reviving this idea and bringing it to clinical

practice by providing an easy-to-use software package to compute sample sizes

according to this criterion for various designs, and by numerically examining

the differences between the standard approach and the one advocated in this

work.

In the remainder of this work we first formalize the problem at hand and

motivate our focus on two-stage allocation procedures (an RCT resulting in a

deterministic guideline). Next, we review prior work in this area and motivate

how our work contributes. In section 3 we introduce the open-source and freely

available [R] package ssev that allows researchers and practitioners to easily

compute optimal sample sizes for various two-group comparisons. Next, we

present a number of numerical results to further illustrate the impact of changing

the sample size planning objective from the trial to population; we demonstrate

that for small populations our current trials are often overly large, while for

large populations they are overly small. Finally, we reflect on our presented

results and discuss possible future extensions.
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2 Problem formalization and relations to the

RCT

The general problem we consider can be phrased in the language of potential

outcomes [Rubin, 2005, Rubin, 2004]. Consider i = 1, . . . , N patients in pop-

ulation P , each with potential outcome yi(k) for treatment k = 1, . . . ,K. We

are interested in evaluating the performance of different treatment allocation

policies π that allocate, for each patient i in the population, one of the K

treatments. Specifically, we are interested in the performance of a subset of all

possible treatment allocation policies that we coin two-stage allocation policies:

1. In Stage I a number of patients n (where often n � N) is randomly

selected from the population, and we randomly assign one of the K treat-

ments to each of these patients. Thus, the probability that a patient

selected in this stage receives treatment k is pIk = 1
K . Note that in the

remainder of this article we will use the notation n(k) and ȳ(k) for the

sample size and sample mean computed over all patients who received

treatment k and we will use yi(·) to denote the observed value for unit i

irrespective of the treatment received.

2. In Stage II we use the data collected in Stage I to select one of the k treat-

ments using some decision procedure δ, and we subsequently subscribe the

selected treatment k = k∗ to the remaining N − n patients in P . Thus,

in stage two we have pIIk = 1 if k = k∗ and pk = 0 otherwise. In practice

this is done by including treatment k∗ into our guidelines.

We are interested in the performance of these two-stage allocation policies in

terms of its expected outcome per unit when executed in a population of size
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N . Thus, we are interested in:
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where the expectation is over the random sampling and allocation in Stage I

and possibly over a random component of the decision procedure δ in Stage II

that determines the probability that a specific treatment k is selected. In the

second line of Equation 1 we use p
(i)
k to denote the probability that treatment

k is selected for patient i, while in the third line we split up the expectation

value of the experiment and the resulting guideline using pIk and pIIk respectively

since within each stage pk is a constant. In the last line these probabilities are

provided: pIk = 1
K , and pIIk = Pr(k = k∗) which, with slight abuse of notation,

denotes the probability that a specific treatment is selected for inclusion into

the guidelines k = k∗. Note that for a given population P of size N , when

considering a fixed number of treatments K, the value of E(πN ) depends on the

choice of n and the specification of Pr(k = k∗), i.e., the probability the decision

procedure δ selects treatment k. Hence, in this setting for a given population,

E(πN ) = f(n, δ). Ultimately, we are interested in finding n, given the current

approach to δ, such that E(πN ) is maximized.
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2.1 Completing the two-stage approach using current RCT

practice.

The two-stage allocation policy defined above provides a simplified formaliza-

tion of our current practice of testing treatments using RCTs. Stage I encom-

passes the RCT itself, and subsequently Stage II encompasses the decision to,

based on the RCTs results, adopt one of the K treatments [Kaptein, 2018]. The

formalization is simplified as we do not consider the common practice of putting

prospective treatments k through several rounds of testing [Spiegelhalter et al., 2004,

Sedgwick, 2011]. Our conceptual treatment can however easily be extended to

such a situation situation as Eq. 1 would still hold but would need to be parti-

tioned into more than two stages. Furthermore, our formalization is simplified

in the sense that we do not consider the—relatively common—situation in which

new treatments are developed over time, and thus are not available for a sub-

set(s) of patients at some points in time (assuming the patients are treated

sequentially) [Robbins, 1985]. Finally, we assume that the population size N

is known; this assumption will never be exactly met, but often reasonable esti-

mate can be made in many cases in which for specific diseases incidence rates

are known [Dye et al., 1999, Feigin et al., 2003].

To closely relate our two-stage formalization to existing RCT practice, we

have to specify the decision rule δ and our choice of the sample size n; indeed,

in our current practice these are intimately related. Our decision rule δ is —

despite much modern work advocating other approaches [Sedgwick, 2011] —

often based on the practice of null hypothesis significance testing: we specify a

null hypothesis H0, and we specify acceptable levels of α and β, the probabili-

ties of making a type I or type II error respectively [Schulz and Grimes, 2005].

Next, we make a statement about a meaningful alternative hypothesis (e.g., the

effect size of interest). Given choices for each of these we can, in many situ-
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ations, compute the minimal sample size n that controls the error rates given

that our assumptions regarding the hypotheses involved are correct. Next, after

conducting the trial of size n it is standard practice to compute a p-value and

if p < α we reject the null hypothesis and accept the alternative. In practice

rejecting the null hypothesis often leads researchers to select the treatment with

the highest mean outcome during the trial (thus k∗ = arg max
k

ȳ(k)) while not

rejecting the null often leads researchers to select the current status-quo.1 De-

pending on the study design and the choice of α the probability of rejecting H0

and the probability of selecting treatments k if Ha is accepted are readily pro-

vided by standard power calculations. Jointly this completes the specification

of the decision procedure δ and hence the specification of pIk and pIIk necessary

to evaluate Eq.1.

From the analysis above it is clear that in our current practice E(πN ) is

defined by our choice of α, β, and our assumptions regarding H0 and Ha (or

the effect size): these jointly define δ and n. However, note that this is not

a necessity; even if we stick close to current practice by performing a null-

hypothesis significance test we could relax our focus on controlling error rates

and rather focus on maximizing E(πN ). A simple method to generate alternative

two-stage treatment allocation policies that is very close to current practice

would be to keep our standard level of α, keep our standard decision procedure,

but determine n such that E(πN ). This can be done by adding to the current

assumptions (e.g., H0 and some estimate of the effect size) an informed estimate

ofN , the population size. Once all of these are known, we can, for many different

designs, evaluate Eq.?? and select n such that E(π) is maximized. When doing

1In our numerical analysis below we assume Pr(k = k∗) = c = 1
K

in such cases. This
default choice is motivated by the idea that prior to the study, all k arms are equally likely to
be superior and hence a random choice after a failed trial seems reasonable. However, in many
situations this choice might not be reasonable; e.g., it is unlikely that a placebo is adapted
after a failed trial. In such cases one might want to change the ties parameter in the ssev

package (see Section 3).
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so the power, 1 − β, will follow from the procedure. This is the approach

implemented in the package ssev we present below.

2.2 Prior work and a motivation for two-stage approaches

Surely, others must have considered treatment allocation policies that maximize

the expected outcome of the full allocation procedure as opposed to controlling

type I and type II errors within the trial? There is actually a very large litera-

ture that considers the analysis of different treatment allocation procedures and

indeed focusses on the overall outcome of the procedure (often called reward in

this literature). This literature on the multi-armed-bandit (MAB) problem—

which formalizes the decision problem we described above as a problem in which,

sequentially, a gambler selects different arms of a slot-machine, each with a po-

tentially different pay-off, such that she maximizes her rewards—is too large

to properly review; we refer the interested reader to Robins [Robbins, 1985] or

Gittins, Glazebrook and Weber [Gittins et al., 2011].

In the decades that the MAB problem has been studied, we have been able

to bound the expected rewards of distinct policies [Bubeck et al., 2012], and we

have developed allocation policies that are asymptotically optimal [Whittle, 1980,

Auer et al., 2002]. We have also connected this mostly theoretical literature di-

rectly to our practice in clinical trials [Bartroff et al., 2012]. However, the liter-

ature on the MAB problem has primarily focussed on allocation policies other

than the two-stage policies since any two-stage procedure is provably suboptimal

[Bubeck et al., 2012]: optimal solutions to the MAB problem effectively balance

exploration (learning the effects of each treatment) and exploitation (selecting

the best treatment). Optimal allocation policies smoothly balance these two

objectives by—effectively—decreasing p
(i)
k smoothly from 1

K to 0 for all k 6= k∗

as i increases. The exact rate of the decrease depends on the observed data
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and the structure of the problem, but any optimal policy will have a smooth

decrease as opposed to the step-wise decrease we see in two-stages policies. Ef-

fectively, two-stage policies first explore (when i ≤ n) and subsequently move to

exploitation (when i > n). This sudden change from exploitation to exploration

does not yield an optimal reward, and hence two-stage policies (coined ε-first in

the MAB literature [Tran-Thanh et al., 2010]), are not considered particularly

interesting.

However, despite the fact that they are not (asymptotically) optimal, two-

stage treatment allocation policies have a practical benefits over alternative

allocation policies that constantly change p
(i)
k . The two-stage policy is clearly

separated into a trial in which all possible treatments are considered, and the

subsequent guideline stage in which only one specific treatment needs to be

considered. This makes that after the trial we can inform medical professionals

of the results of the trial and they do not need to consider alternatives. We can

inform patients of the “best” treatment without needing to resort to complex

explanations to justify changing probabilities for each patient. And, finally, we

can distribute a single treatment (e.g., a medication) to all treatment locations,

as opposed to distributing all possible treatments for the (often unlikely) event

that a treatments is selected by the policy. These practical benefits of two-stage

policies over smooth allocation policies have resulted in a slow uptake of smooth

policies in practice[Kaptein, 2018]. Therefore, we focus specifically on two-stage

allocation policies and study alternative methods of determining n; the main

parameter that drives the step from exploration to exploitation.

Notably, even when focussing solely on two-stage decision procedures that

are close to current practice, this work is not the first in its kind: in the 60’s a

body of theoretical work emerged studying the required sample size when aiming

to maximize the expected outcome when choosing between treatments. Initially
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work focussed on choosing between two treatments from normal populations

with variances known [Colton, 1963]. The work was quickly extended to allowing

for multiple stages [Colton, 1965], or multiple treatments [Dunnett, 1960]. Re-

searchers also examined fully sequential allocation [Anscombe, 1963, Cornfield et al., 1969];

an approach closer to the MAB literature. The analysis was further extended to

alternative decision rules such as play the winner[Zelen, 1969] and to dichoto-

mous outcomes [Canner, 1970]. These all works convincingly demonstrate the

effectiveness gains of including the population size in computations of the sam-

ple size, a message we also demonstrate in this work. We deviate from this

prior work by focussing more strongly on current RCT practice (i.e., by in-

cluding a null-hypothesis significance test within the decision procedure a case

not included in these prior analyses2) and by providing easy to use software to

compute sample sizes for comparisons of two treatments.

3 An easy to use [R] package for sample size

computation

Instead of focussing on an analytical treatment of different two-stage decision

procedures as has been done in prior work [Colton, 1963, Dunnett, 1960], we

focus on creating easy-to-use software to compute sample sizes for practical RCT

designs while staying close to the current null-hypothesis testing practice. Here

we present the ssev [R] package that allows researchers to include population

sizes in their RCT planning when setting up comparisons between two groups

(i.e., K = 2) when comparing means (using t-tests with equal variances assumed

or not assumed) or proportions.

2Prior work mostly uses k∗ = arg max
k

ȳ(k); we stay closer to current RCT practice by

chosing k∗ = arg max
k

ȳ(k) only when H0 is rejected.
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Figure 1: Example output of the ssev package.

The ssev package is available on CRAN, and is easily installed using the

following [R] commands:

install.packages("ssev")

library(ssev)

After installing the package the compute sample size function is available

to compute sample sizes that maximize the expected outcome of the two-stage

approach described below for various cases. For example, a call to

compute_sample_size(means=c(0,.5), sds=1, N=500000)

computes the sample size when comparing two means which are expected to

differ by 1
2 , assuming equal variances, σ2 = 1 (i.e., Cohen’s d = 1

2 ) and a

population size of N = 500000. The call provides the output presented in

Figure 1 which shows that using conventional power calculations (with default

choices α = .05 and 1−β = .8) the traditional RCT would require a sample size

of 64 per group, while in this case a sample size that maximizes the expected

outcome E(πN ) of a two-stage procedure would require a sample size of 261 per

group. When choosing this larger sample size, the expected mean reward of the

two-stage procedure over the full population would increase by more than 10%.

Table 1 details the arguments to the compute sample size function.

The ssev package computes the desired optimal sample sizes using numerical

optimization routines in combination with standard power calculations provided
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means A vector of length 2 containing the (assumed) means of the
two groups in the case of continuous outcomes.

sds A vector containing the (assumed) standard deviations of
the two groups. When only one element is supplied equal
variances are assumed.

proportions A vector of length 2 containing the (assumed) proportions
of the two groups in the case of dichotomous outcomes.

N Estimated population size.
power Desired power for the classical RCT (i.e. 1− β).
sig.level Significance level of the test used (i.e., α).
ties Probability of choosing the first group in case of a tie (i.e.,

in case H0 is not rejected).
.verbose Whether or not verbose output should be provided, default

FALSE.
... further arguments passed on to or from other methods.

Table 1: Arguments for the ssev package to compute sample sizes

in earlier [R] packages (e.g., the MESS and pwr packages). The implementation is

relatively straightforward: for each design a simple utility function to compute

the expected value of the complete two stage procedure as a function of the

sample size n is created which implements Equation 1. Computing the expected

value of the RCT is straightforward for all designs included in the package (mean

comparisons assuming equal or unequal variances, proportion comparisons), but

the probabilities of rejecting H0, and subsequently the probability of selecting

one of the K = 2 arms given that H0 is rejected, differ; these are however readily

provided using standard power calculation packages. Numerical optimization is

then used to evaluate the expected value function for the desired design for

values 2 ≤ n ≤ N and select the value of n that maximizes the expected

outcome.

4 Numerical analysis when comparing 2 groups

To gain additional understanding of the effectiveness and efficiency of our pro-

posed method we present a number of numerical evaluations. First, we examine
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the differences in effectiveness–in terms of expected outcomes—and sample size

between the common RCT procedure and our proposed approach. Next, we

examine how under- and over-estimates of the population size N affect the

computed sample size n.

4.1 Efficiency over current RCT practice

Table 2 presents the difference in expected outcomes—in terms of relative gains—

between the common RCT and the method outlined in this paper. We exam-

ine three differences in means d ∈ {.2, .5, .8} assuming either equal variances

σ2
1 = σ2

2 = 1 or unequal variances σ2
1 = σ2

2 = 9 and three differences in propor-

tions p ∈ {.1, .2, .3} for different population sizes N ∈ {102, 103, . . . , 108}. It is

clear from the table that in all cases, the optimal sample size leads to a higher

expected outcome, E(πN ), than current RCT practice with relative differences

often exceeding 10%.

Design d 102 103 104 105 106 107 108

1 Eq. Var. 0.2 5.072 11.969 5.189 10.066 10.935 11.057 11.073
2 0.5 20.578 3.163 9.539 10.811 10.994 11.018 11.021
3 0.8 2.050 6.455 9.977 10.560 10.640 10.650 10.651

4 Uneq. Var. 0.2 1.975 8.444 0.259 7.494 10.545 11.033 11.099
5 0.5 5.750 5.319 6.014 10.237 10.961 11.061 11.074
6 0.8 11.544 0.440 8.441 10.583 10.910 10.953 10.959

7 Prop. 0.1 0.439 1.704 0.359 0.909 1.018 1.034 1.036
8 0.2 3.638 0.064 1.350 1.719 1.776 1.784 1.785
9 0.3 4.363 0.744 1.939 2.178 2.212 2.217 2.217

Table 2: Gain of the optimal procedure over common RCT practice in relative
percentages.

Table 3 provides further details: the table shows the differences in the size

of a single group (i.e., n/2) between the common RCT and the optimal scheme

suggested in this paper. It is clear that for small population sizes RCTs often

require too large sample sizes (borrowing a term from the MAB literature, in

these cases the RCT over-explores), while for large populations the sample sizes
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selected using common power calculations are too low (in these cases these

studies over-exploit and hence too often choose the wrong treatment to end up

in the subsequent guideline).

Design d 102 103 104 105 106 107 108

1 Eq. Var. 0.2 29 178 -303 -708 -1064 -1400 -1724
2 0.5 26 -34 -101 -159 -213 -266 -316
3 0.8 6 -25 -49 -71 -92 -112 -131

4 Uneq. Var. 0.2 31 285 193 -2169 -4093 -5836 -7493
5 0.5 28 109 -277 -595 -878 -1146 -1404
6 0.8 26 -20 -161 -278 -386 -489 -588

7 Prop. 0.1 11 200 -207 -570 -897 -1209 -1511
8 0.2 29 -13 -105 -186 -262 -335 -406
9 0.3 20 -20 -56 -88 -118 -148 -177

Table 3: Difference in sample size between the choice that maximizes the ex-
pected outcome and the traditional RCT. Reported is nrct − noptimal; thus,
positive entries indicate that the RCT would select a larger sample than the
optimal procedure. Clearly, for large populations (e.g., N > 105) our current
RCTs are often too small.

4.2 Robustness to population size estimation.

As a final comparison to gain additional insight into the proposed procedure

Table 4 provides the difference in the number of subjects in each group for a trial

comparing two means with equal variances (σ2 = 1) and different effect-sizes

d ∈ {.2, .5, .8} when the size of the population N is over-estimated or under-

estimated by 10%. Thus, the first entry of 1 in Table 4 indicates that when the

population size of 102 is under-estimated by 10% (i.e., it is estimated at 90),

versus when it is over estimated by 10% (i.e., at 110) the optimal sample size

differs by only one unit per group in this case. Clearly, as sample sizes increase,

the effect of a (proportional) error in estimating the sample size increase and the

estimated group size is more variable. In the RCT case, in which the difference

between the two over- and under-estimation does not depend on the population

size N , the results are 160, 26, and 10 respectively. This indicates that for small
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population sizes the proposed optimal procedure is less sensitive to erroneous

estimates of the population size than the RCT is. For larger sample sizes the

optimal procedure becomes more variable to errors in estimating the sample size:

this is however easily explained as for large populations the potential benefits

of additional experimentation (e.g., a larger n) steadily increase.

Design d 102 103 104 105 106 107 108

4 Optimal .2 1 15 202 382 532 672 806
5 .5 1 25 56 80 103 125 145
6 .8 3 15 26 35 44 53 60

Table 4: Comparison of optimal sample sizes in terms of number of subjects per
group for varying population sizes.

5 Conclusions and discussion

In this paper we discussed an alternative approach to computing sample sizes

in randomized clinical trials and we have provided easy-to-use software package

to carry out the procedure. The approach we suggest here considers the trial as

merely the first stage of the larger process of allocating treatments to patients

which can be split up into two distinct stages: first we learn about the effective-

ness of treatments during the trial, and subsequently we select and administer

the treatment that was most successful in the trial to the remaining patients

by including it in our clinical guidelines. We have motivated that the expected

outcome of these two-stage allocation policies depends on the choice of sample

size n, and the decision procedure δ that is used when moving from stage Stage

I to Stage II. In the current planning of RCTs we often focus on properties of

the first stage (in terms of type I and type II errors), and because of this n

is fixed for a given decision procedure δ. We suggest relaxing our fixation on

the properties of the trial, and subsequently changing the decision procedure

δ, such that we can freely choose a sample size n that maximizes the expected
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outcome over the full two stage procedure. Admittedly, doing so introduces a

need for informed estimates of the population size N when planning a trial. This

seems cumbersome as it is something we are not generally used to. However,

we would be tempted to argue that for many diseases incidence and prevalence

rates—which would allow us to make informed estimates of N—are available.

A lot of prior work has considered alternatives allocation schemes compared

to the traditional RCT; we have provided pointers to both the MAB literature—

in which fully adaptive allocation schemes are discussed—as well as to earlier

results demonstrating the effectiveness of the two stage approach we propose

here [Colton, 1963]. We are well aware that the two-stage approach we examine

in this work does not actually maximize the expected outcome of the sequential

allocation of treatments over all units: more flexible allocation policies that

constantly change p
(i)
k can achieve a higher outcome. However, we believe that

two-stage approaches have sufficient practical benefits to, in some cases, be

preferred over more flexible sequential allocation procedures [Auer et al., 2002].

Hence, optimizing two-stage allocation policies provides a useful addition to the

current literature. Our contribution is primarily of an applied nature; we build

on earlier ideas to provide an easy-to-use software package that allows for the

computation of optimal sample sizes for a number of common RCT designs.

The current paper also numerically examined the differences between cur-

rent RCT practice and our suggested approach. Qualitatively, the main results

are intuitive: For small populations we need smaller samples, while for larger

populations we need larger samples, to maximize our expected outcome. Fur-

thermore, a willingness to make assumptions regarding N improves our robust-

ness to choices of the clinically meaningful effect-size of the treatment d when

N is small. However, we have left a number of avenues unexplored: first of all

we restricted ourselves to merely varying β; as also α is inherently arbitrary we
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might wish to also vary α when computing n in a two-stage allocation policy.

Also, despite setting up the problem for arbitrary choice of K, the package ssev

currently handles only a choice of K = 2; we feel this is a meaningful contri-

bution but future work should extend the implemented methods to including

more complex designs. Finally, in our treatment of the problem we currently

only focus on the direct outcomes and we do not include possible differences in

costs between the two stages (the trial might be more expensive to carry out

than the guidelines), or plausible variable costs during the second stage: these

are welcome extensions to explore in future work. However, for now we hope the

current work at the very least inspires those planning out RCTs to consider al-

ternatives to standard power calculations advocated in many introductory text

books; easily available alternatives that are close to current practice might pro-

vide an accessible step in the direction of more flexible trial planning and sample

size computation.
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